This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318143 #6 Aug 19 2018 11:55:22 %S A318143 1,1,0,1,1,1,1,4,4,0,1,11,17,7,1,1,26,76,66,16,0,1,57,317,467,237,31, %T A318143 1,1,120,1212,2962,2612,806,64,0,1,247,4321,17215,24145,13519,2641, %U A318143 127,1,1,502,14644,92554,199192,178486,65884,8434,256,0 %N A318143 Coefficients of the polynomials generated by the e.g.f. cosh(x*z)*(x-1)/(x-exp(z*(x-1))), triangle read by rows, T(n,k) for 0 <= k <= n. %e A318143 [n\k][0, 1, 2, 3, 4, 5, 6, 7, 8] %e A318143 [0] 1; %e A318143 [1] 1, 0; %e A318143 [2] 1, 1, 1; %e A318143 [3] 1, 4, 4, 0; %e A318143 [4] 1, 11, 17, 7, 1; %e A318143 [5] 1, 26, 76, 66, 16, 0; %e A318143 [6] 1, 57, 317, 467, 237, 31, 1; %e A318143 [7] 1, 120, 1212, 2962, 2612, 806, 64, 0; %e A318143 [8] 1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1; %p A318143 gf := cosh(x*z)*(x-1)/(x-exp(z*(x-1))): %p A318143 ser := series(gf, z, 12): p := n -> normal(n!*coeff(ser, z, n)): %p A318143 seq(seq(coeff(p(n),x,k), k=0..n), n=0..10); %Y A318143 Row sums are (-1)^n*A009179(n). %Y A318143 Alternating row sums are 1. %Y A318143 Polynomials evaluated at x = 0 are 1. %Y A318143 T(n, n-1) = A051049(n-1) for n >= 1. %Y A318143 T(n, 1) = A000295(n) for n >= 0. %Y A318143 Cf. A046802, A173018. %K A318143 nonn,tabl %O A318143 0,8 %A A318143 _Peter Luschny_, Aug 19 2018