This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318144 #31 Sep 08 2022 08:46:22 %S A318144 1,0,-1,0,-1,2,0,-1,2,-6,0,-1,4,-6,24,0,-1,4,-12,24,-120,0,-1,6,-18, %T A318144 48,-120,720,0,-1,6,-24,72,-240,720,-5040,0,-1,8,-30,120,-360,1440, %U A318144 -5040,40320,0,-1,8,-42,144,-600,2160,-10080,40320,-362880 %N A318144 T(n, k) = (-1)^k*k!*P(n, k), where P(n, k) is the number of partitions of n of length k. Triangle read by rows, 0 <= k <= n. %H A318144 Alois P. Heinz, <a href="/A318144/b318144.txt">Rows n = 0..150, flattened</a> (first 45 rows from Peter Luschny) %e A318144 [0] [1], %e A318144 [1] [0, -1], %e A318144 [2] [0, -1, 2], %e A318144 [3] [0, -1, 2, -6], %e A318144 [4] [0, -1, 4, -6, 24], %e A318144 [5] [0, -1, 4, -12, 24, -120], %e A318144 [6] [0, -1, 6, -18, 48, -120, 720], %e A318144 [7] [0, -1, 6, -24, 72, -240, 720, -5040], %e A318144 [8] [0, -1, 8, -30, 120, -360, 1440, -5040, 40320], %e A318144 [9] [0, -1, 8, -42, 144, -600, 2160, -10080, 40320, -362880] %p A318144 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, %p A318144 b(n, i-1), 0)+expand(b(n-i, min(n-i, i))*x)) %p A318144 end: %p A318144 T:= n-> (p-> seq(i!*coeff(p, x, i)*(-1)^i, i=0..n))(b(n$2)): %p A318144 seq(T(n), n=0..14); # _Alois P. Heinz_, Sep 18 2019 %t A318144 t[n_, k_] := (-1)^k k! (IntegerPartitions[n, {k}] // Length); %t A318144 Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten %t A318144 (* Second program: *) %t A318144 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > 1, %t A318144 b[n, i - 1], 0] + Expand[b[n - i, Min[n - i, i]]*x]]; %t A318144 T[n_] := Function[p, Table[i!*Coefficient[p, x, i]*(-1)^i, {i, 0, n}]][ b[n, n]]; %t A318144 T /@ Range[0, 14] // Flatten (* _Jean-François Alcover_, Jun 07 2021, after _Alois P. Heinz_ *) %o A318144 (Sage) %o A318144 from sage.combinat.partition import number_of_partitions_length %o A318144 def A318144row(n): %o A318144 return [(-1)^k*number_of_partitions_length(n, k)*factorial(k) for k in (0..n)] %o A318144 for n in (0..9): print(A318144row(n)) %o A318144 (Magma) /* As triangle: */ %o A318144 [[(-1)^k*#Partitions(n,k)*Factorial(k): k in [0..n]]: n in [0..10]]; // _Bruno Berselli_, Aug 20 2018 %Y A318144 Row sums are A260845, absolute row sums are A101880. %Y A318144 Cf. A008284, A072233, A178803. %K A318144 sign,tabl %O A318144 0,6 %A A318144 _Peter Luschny_, Aug 20 2018