cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318146 Coefficients of the Omega polynomials of order 2, triangle T(n,k) read by rows with 0<=k<=n.

This page as a plain text file.
%I A318146 #37 Mar 06 2020 03:29:53
%S A318146 1,0,1,0,-2,3,0,16,-30,15,0,-272,588,-420,105,0,7936,-18960,16380,
%T A318146 -6300,945,0,-353792,911328,-893640,429660,-103950,10395,0,22368256,
%U A318146 -61152000,65825760,-36636600,11351340,-1891890,135135
%N A318146 Coefficients of the Omega polynomials of order 2, triangle T(n,k) read by rows with 0<=k<=n.
%C A318146 The name 'Omega polynomial' is not a standard name. The Omega numbers are the coefficients of the Omega polynomials, the associated Omega numbers are the weights of P(m, k) in the recurrence formula given below.
%C A318146 The signed Euler secant numbers appear as values at x=-1 and the signed Euler tangent numbers as the coefficients of x.
%H A318146 Peter Luschny, <a href="/A318146/b318146.txt">Table of the first 63 rows.</a>
%F A318146 OmegaPolynomial(m, n) = (m*n)! [z^n] E(m, z)^x where E(m, z) is the Mittag-Leffler function.
%F A318146 OmegaPolynomial(m, n) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m).
%F A318146 The Omega polynomials can be computed by the recurrence P(m, 0) = 1 and for n >= 1 P(m, n) = x * Sum_{k=0..n-1} binomial(m*n-1, m*k)*T(m, n-k)*P(m, k) where T(m, n) are the generalized tangent numbers A318253. A separate computation of the T(m, n) can be avoided, see the Sage implementation below for the details.
%F A318146 T(n, k) = [x^k] (2*n)! [z^(2*n)] sech(z)^(-x). - _Peter Luschny_, Jul 01 2019
%e A318146 Row n in the triangle below is the coefficient list of OmegaPolynomial(2, n). For other cases than m = 2 see the cross-references.
%e A318146 [0] [1]
%e A318146 [1] [0,        1]
%e A318146 [2] [0,       -2,         3]
%e A318146 [3] [0,       16,       -30,       15]
%e A318146 [4] [0,     -272,       588,     -420,       105]
%e A318146 [5] [0,     7936,    -18960,    16380,     -6300,      945]
%e A318146 [6] [0,  -353792,    911328,  -893640,    429660,  -103950,    10395]
%e A318146 [7] [0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135]
%p A318146 OmegaPolynomial := proc(m, n) local Omega;
%p A318146 Omega := m -> hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m):
%p A318146 series(Omega(m)^x, z, m*(n+1)):
%p A318146 sort(expand((m*n)!*coeff(%, z, n*m)), [x], ascending) end:
%p A318146 CL := p -> PolynomialTools:-CoefficientList(p, x):
%p A318146 FL := p -> ListTools:-Flatten(p):
%p A318146 FL([seq(CL(OmegaPolynomial(2, n)), n=0..8)]);
%p A318146 # Alternative:
%p A318146 ser := series(sech(z)^(-x), z, 24): row := n -> n!*coeff(ser, z, n):
%p A318146 seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..6); # _Peter Luschny_, Jul 01 2019
%t A318146 OmegaPolynomial[m_,n_] :=  Module [{ },
%t A318146 S = Series[MittagLefflerE[m,z]^x, {z,0,10}];
%t A318146 Expand[(m n)! Coefficient[S,z,n]] ]
%t A318146 Table[CoefficientList[OmegaPolynomial[2,n],x], {n,0,7}] // Flatten
%t A318146 (* Second program: *)
%t A318146 T[n_, k_] := (2n)! SeriesCoefficient[Sech[z]^-x, {z, 0, 2n}, {x, 0, k}];
%t A318146 Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 23 2019, after _Peter Luschny_ *)
%o A318146 (Sage)
%o A318146 def OmegaPolynomial(m, n):
%o A318146     R = ZZ[x]; z = var('z')
%o A318146     f = [i/m for i in (1..m-1)]
%o A318146     h = lambda z: hypergeometric([], f, (z/m)^m)
%o A318146     return R(factorial(m*n)*taylor(h(z)^x, z, 0, m*n + 1).coefficient(z, m*n))
%o A318146 [list(OmegaPolynomial(2, n)) for n in (0..6)]
%o A318146 # Recursion over the polynomials, returns a list of the first len polynomials:
%o A318146 def OmegaPolynomials(m, len, coeffs=true):
%o A318146     R = ZZ[x]; B = [0]*len; L = [R(1)]*len
%o A318146     for k in (1..len-1):
%o A318146         s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1))
%o A318146         B[k] = c = 1 - s.subs(x=1)
%o A318146         L[k] = R(expand(s + c*x))
%o A318146     return [list(l) for l in L] if coeffs else L
%o A318146 print(OmegaPolynomials(2, 6))
%Y A318146 Variant is A088874 (unsigned).
%Y A318146 T(n,1) = A000182(n), T(n,n) = A001147(n).
%Y A318146 All row sums are 1, alternating row sums are A028296 (A000364).
%Y A318146 A023531 (m=1), this seq (m=2), A318147 (m=3), A318148 (m=4).
%Y A318146 Associated Omega numbers: A318254 (m=2), A318255 (m=3).
%Y A318146 Coefficients of x for Omega polynomials of all orders are in A318253.
%K A318146 sign,tabl
%O A318146 0,5
%A A318146 _Peter Luschny_, Aug 22 2018