cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318147 Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.

This page as a plain text file.
%I A318147 #11 Aug 26 2018 05:31:02
%S A318147 1,0,1,0,-9,10,0,477,-756,280,0,-74601,142362,-83160,15400,0,25740261,
%T A318147 -55429920,40900860,-12612600,1401400,0,-16591655817,38999319642,
%U A318147 -33465991104,13440707280,-2572970400,190590400
%N A318147 Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.
%C A318147 The name 'Omega polynomial' is not a standard name.
%F A318147 Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 3 (for other cases see the cross-references).
%e A318147 [0] [1]
%e A318147 [1] [0,            1]
%e A318147 [2] [0,           -9,          10]
%e A318147 [3] [0,          477,        -756,          280]
%e A318147 [4] [0,       -74601,      142362,       -83160,       15400]
%e A318147 [5] [0,     25740261,   -55429920,     40900860,   -12612600,     1401400]
%e A318147 [6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400]
%p A318147 # See A318146 for the missing functions.
%p A318147 FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]);
%t A318147 (* OmegaPolynomials are defined in A318146 *)
%t A318147 Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten
%o A318147 (Sage)
%o A318147 # See A318146 for the function OmegaPolynomial.
%o A318147 [list(OmegaPolynomial(3, n)) for n in (0..6)]
%Y A318147 All row sums are 1, alternating row sums (taken absolute) are A002115.
%Y A318147 T(n,1) ~ A293951(n), T(n,n) = A025035(n).
%Y A318147 A023531 (m=1), A318146 (m=2), this seq (m=3), A318148 (m=4).
%K A318147 sign,tabl
%O A318147 0,5
%A A318147 _Peter Luschny_, Aug 22 2018