This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318147 #11 Aug 26 2018 05:31:02 %S A318147 1,0,1,0,-9,10,0,477,-756,280,0,-74601,142362,-83160,15400,0,25740261, %T A318147 -55429920,40900860,-12612600,1401400,0,-16591655817,38999319642, %U A318147 -33465991104,13440707280,-2572970400,190590400 %N A318147 Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n. %C A318147 The name 'Omega polynomial' is not a standard name. %F A318147 Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 3 (for other cases see the cross-references). %e A318147 [0] [1] %e A318147 [1] [0, 1] %e A318147 [2] [0, -9, 10] %e A318147 [3] [0, 477, -756, 280] %e A318147 [4] [0, -74601, 142362, -83160, 15400] %e A318147 [5] [0, 25740261, -55429920, 40900860, -12612600, 1401400] %e A318147 [6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400] %p A318147 # See A318146 for the missing functions. %p A318147 FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]); %t A318147 (* OmegaPolynomials are defined in A318146 *) %t A318147 Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten %o A318147 (Sage) %o A318147 # See A318146 for the function OmegaPolynomial. %o A318147 [list(OmegaPolynomial(3, n)) for n in (0..6)] %Y A318147 All row sums are 1, alternating row sums (taken absolute) are A002115. %Y A318147 T(n,1) ~ A293951(n), T(n,n) = A025035(n). %Y A318147 A023531 (m=1), A318146 (m=2), this seq (m=3), A318148 (m=4). %K A318147 sign,tabl %O A318147 0,5 %A A318147 _Peter Luschny_, Aug 22 2018