cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318148 Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.

This page as a plain text file.
%I A318148 #10 Aug 26 2018 05:31:09
%S A318148 1,0,1,0,-34,35,0,11056,-16830,5775,0,-14873104,27560780,-15315300,
%T A318148 2627625,0,56814228736,-119412815760,84786627900,-24734209500,
%U A318148 2546168625,0,-495812444583424,1140896479608800,-948030209181000,364143337057500,-65706427536750,4509264634875
%N A318148 Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
%C A318148 The name 'Omega polynomial' is not a standard name.
%F A318148 Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 4 (for other cases see the cross-references).
%e A318148 [0] [1]
%e A318148 [1] [0,           1]
%e A318148 [2] [0,         -34,            35]
%e A318148 [3] [0,       11056,        -16830,        5775]
%e A318148 [4] [0,   -14873104,      27560780,   -15315300,      2627625]
%e A318148 [5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]
%p A318148 # See A318146 for the missing functions.
%p A318148 FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);
%t A318148 (* OmegaPolynomials are defined in A318146 *)
%t A318148 Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten
%o A318148 (Sage)
%o A318148 # See A318146 for the function OmegaPolynomial.
%o A318148 [list(OmegaPolynomial(4, n)) for n in (0..6)]
%Y A318148 All row sums are 1, alternating row sums (taken absolute) are A211212.
%Y A318148 T(n,1) ~ A273352(n), T(n,n) = A025036(n).
%Y A318148 A023531 (m=1), A318146 (m=2), A318147 (m=3), this seq (m=4).
%K A318148 sign,tabl
%O A318148 0,5
%A A318148 _Peter Luschny_, Aug 22 2018