This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318148 #10 Aug 26 2018 05:31:09 %S A318148 1,0,1,0,-34,35,0,11056,-16830,5775,0,-14873104,27560780,-15315300, %T A318148 2627625,0,56814228736,-119412815760,84786627900,-24734209500, %U A318148 2546168625,0,-495812444583424,1140896479608800,-948030209181000,364143337057500,-65706427536750,4509264634875 %N A318148 Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n. %C A318148 The name 'Omega polynomial' is not a standard name. %F A318148 Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 4 (for other cases see the cross-references). %e A318148 [0] [1] %e A318148 [1] [0, 1] %e A318148 [2] [0, -34, 35] %e A318148 [3] [0, 11056, -16830, 5775] %e A318148 [4] [0, -14873104, 27560780, -15315300, 2627625] %e A318148 [5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625] %p A318148 # See A318146 for the missing functions. %p A318148 FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]); %t A318148 (* OmegaPolynomials are defined in A318146 *) %t A318148 Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten %o A318148 (Sage) %o A318148 # See A318146 for the function OmegaPolynomial. %o A318148 [list(OmegaPolynomial(4, n)) for n in (0..6)] %Y A318148 All row sums are 1, alternating row sums (taken absolute) are A211212. %Y A318148 T(n,1) ~ A273352(n), T(n,n) = A025036(n). %Y A318148 A023531 (m=1), A318146 (m=2), A318147 (m=3), this seq (m=4). %K A318148 sign,tabl %O A318148 0,5 %A A318148 _Peter Luschny_, Aug 22 2018