This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318149 #14 Jan 01 2021 18:13:24 %S A318149 1,4,16,36,128,256,441,1296,2025,16384,21025,65536,77841,194481, %T A318149 220900,279936,1679616,1803649,4100625,4338889,268435456,273571600, %U A318149 442050625,449482401,1801088541,4294967296,4334247225,6059221281 %N A318149 e-numbers of free pure symmetric multifunctions with one atom. %C A318149 If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[]. %H A318149 Charlie Neder, <a href="/A318149/b318149.txt">Table of n, a(n) for n = 1..310</a> %H A318149 Charlie Neder, <a href="/A318149/a318149.py.txt">Python program for calculating this sequence</a> %e A318149 The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins: %e A318149 1: o %e A318149 4: o[o] %e A318149 16: o[o,o] %e A318149 36: o[o][o] %e A318149 128: o[o[o]] %e A318149 256: o[o,o,o] %e A318149 441: o[o,o][o] %e A318149 1296: o[o][o,o] %e A318149 2025: o[o][o][o] %e A318149 16384: o[o,o[o]] %e A318149 21025: o[o[o]][o] %e A318149 65536: o[o,o,o,o] %e A318149 77841: o[o,o,o][o] %e A318149 194481: o[o,o][o,o] %e A318149 220900: o[o,o][o][o] %e A318149 279936: o[o][o[o]] %t A318149 nn=1000; %t A318149 radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1]; %t A318149 rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]]; %t A318149 Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn]; %t A318149 exp[n_]:=If[n==1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]]; %t A318149 Select[Range[nn],FreeQ[exp[#],_[]]&] %o A318149 (Python) See Neder link. %Y A318149 A subsequence of A001597. %Y A318149 Cf. A007916, A052409, A052410, A277576, A277996, A280000. %Y A318149 Cf. A317658, A316112, A317056, A317765, A317994, A318150, A318152, A318153. %K A318149 nonn %O A318149 1,2 %A A318149 _Gus Wiseman_, Aug 19 2018 %E A318149 a(16)-a(27) from _Charlie Neder_, Sep 01 2018