This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318150 #13 Feb 24 2019 14:29:32 %S A318150 1,4,36,128,2025,21025,279936,4338889,449482401,78701569444, %T A318150 373669453125,18845583322500,1347646586640625,202054211912421649, %U A318150 6193981883008128893161,139629322539586311507076,170147232533595290155627,355156175404848064835984400 %N A318150 e-numbers of free pure functions with one atom. %C A318150 If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). This sequence consists of all numbers n such that e(n) contains no non-unitary subexpressions f[x_1, ..., x_k] where k != 1. %H A318150 Charlie Neder, <a href="/A318150/b318150.txt">Table of n, a(n) for n = 1..44</a> %F A318150 a(1) = 1, and if a and b are in this sequence then so is rad(a)^prime(b). - _Charlie Neder_, Feb 23 2019 %e A318150 The sequence of all free pure functions with one atom together with their e-numbers begins: %e A318150 1: o %e A318150 4: o[o] %e A318150 36: o[o][o] %e A318150 128: o[o[o]] %e A318150 2025: o[o][o][o] %e A318150 21025: o[o[o]][o] %e A318150 279936: o[o][o[o]] %e A318150 4338889: o[o][o][o][o] %Y A318150 A subsequence of A001597. %Y A318150 Cf. A000108, A007916, A052409, A052410, A277576, A277996, A280000. %Y A318150 Cf. A317658, A316112, A317056, A317765, A317994, A318149, A318152, A318153. %K A318150 nonn %O A318150 1,2 %A A318150 _Gus Wiseman_, Aug 19 2018 %E A318150 More terms from _Charlie Neder_, Feb 23 2019