This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318152 #6 Aug 20 2018 07:54:57 %S A318152 1,4,16,128,256,16384,65536,268435456,4294967296,562949953421312, %T A318152 9007199254740992,72057594037927936,18446744073709551616, %U A318152 316912650057057350374175801344,81129638414606681695789005144064,5192296858534827628530496329220096 %N A318152 e-numbers of unlabeled rooted trees. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k > 0 and y_1, ..., y_k already in the sequence. %C A318152 If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[] or subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0. %e A318152 The sequence contains 16384 = 2^14 = 2^(prime(1) * prime(4)) because 1 and 4 both already belong to the sequence. %e A318152 The sequence of unlabeled rooted trees with e-numbers in the sequence begins: %e A318152 1: o %e A318152 4: (o) %e A318152 16: (oo) %e A318152 128: ((o)) %e A318152 256: (ooo) %e A318152 16384: (o(o)) %e A318152 65536: (oooo) %e A318152 . (oo(o)) %e A318152 . (ooooo) %e A318152 . ((o)(o)) %e A318152 ((oo)) %e A318152 (ooo(o)) %e A318152 (oooooo) %e A318152 (o(o)(o)) %e A318152 (o(oo)) %e A318152 (oooo(o)) %e A318152 (ooooooo) %e A318152 (oo(o)(o)) %t A318152 baQ[n_]:=Or[n==1,MatchQ[FactorInteger[n],{{2,_?(And@@Cases[FactorInteger[#],{p_,k_}:>baQ[PrimePi[p]]]&)}}]]; %t A318152 Select[2^Range[0,50],baQ] %Y A318152 A subsequence of A000079 and A318151. %Y A318152 Cf. A000081, A007916, A052409, A052410, A277576, A277996, A280000. %Y A318152 Cf. A317658, A316112, A317056, A317765, A317994, A318149, A318150, A318153. %K A318152 nonn %O A318152 1,2 %A A318152 _Gus Wiseman_, Aug 19 2018