This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318157 #28 Jan 02 2019 21:53:54 %S A318157 101,103,107,137,139,197,199,223,227,257,307,347,367,373,379,461,463, %T A318157 467,479,487,491,499,569,571,577,587,613,617,619,641,643,677,683,701, %U A318157 733,739,743,751,809,811,821,823,827,829,853,857,859,863,877,881,883,941 %N A318157 Primes that are one more or one less than the sum of four consecutive composite numbers. %H A318157 Chai Wah Wu, <a href="/A318157/b318157.txt">Table of n, a(n) for n = 1..10000</a> %e A318157 24 + 25 + 26 + 27 - 1 = 101; %e A318157 24 + 25 + 26 + 27 + 1 = 103; %e A318157 25 + 26 + 27 + 28 + 1 = 107. %e A318157 26 + 27 + 28 + 29 - 1 = 109, but 29 is not composite, so 109 is not in the sequence. %t A318157 tempList = Table[(Plus@@Range[n, n + 3]) * KroneckerDelta[PrimePi[n - 1], PrimePi[n + 3]], {n, 250}]; Union[Select[tempList - 1, PrimeQ], Select[tempList + 1, PrimeQ]] (* _Alonso del Arte_, Sep 02 2018 *) %o A318157 (Python) %o A318157 from sympy import isprime %o A318157 A318157_list = [] %o A318157 for n in range(2,10**6): %o A318157 if not (isprime(n) or isprime(n+1) or isprime(n+2) or isprime(n+3)): %o A318157 if isprime(4*n+5): %o A318157 A318157_list.append(4*n+5) %o A318157 if isprime(4*n+7): %o A318157 A318157_list.append(4*n+7) # _Chai Wah Wu_, Jan 02 2019 %Y A318157 Cf. A296012. %K A318157 nonn %O A318157 1,1 %A A318157 _Martin Michael Musatov_, Aug 19 2018 %E A318157 a(16)-a(52) from _Jon E. Schoenfield_, Aug 19 2018