A318163 a(0) = a(3) = 0, a(1) = a(2) = 1; for n >= 2, a(2*n) = -a(n-1) and a(2*n+1) = -a(n-1)-a(n).
0, 1, 1, 0, -1, -2, -1, -1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, -4, -3, -5, -2, -5, -3, -4, -1, -3, -2, -3, -1, -2, -1, -1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, -3, -2, -3, -1, -4, -3, -5, -2, -5, -3, -4, -1, -6, -5, -9, -4, -11, -7
Offset: 0
Links
- Altug Alkan, Table of n, a(n) for n = 0..20480
- Altug Alkan, A scatterplot of a(n) for n <= 5*2^12
- Altug Alkan, A scatterplot of first differences of a(n) for n <= 5*2^13
Programs
-
Mathematica
a[0]=a[3]=0; a[1]=a[2]=1; a[n_] := a[n] = If[EvenQ[n], -a[n/2-1], -a[(n-1)/2 - 1] - a[(n-1)/2]]; Array[a, 101, 0] (* Giovanni Resta, Aug 27 2018 *)
-
PARI
a = vector(100); print1(0", "); for(k=1, #a, print1 (a[k]=if(k<=2,1, my (n=k\2); if (k%2==0, -a[n-1], a[2*n]-a[n]))", "));
Formula
a(5*2^k-2) = 0 for all k >= 0.
Comments