cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318170 Composite numbers k such that A008480(k) = k.

This page as a plain text file.
%I A318170 #10 Aug 27 2018 05:34:21
%S A318170 1781030694643200,2671546041964800,2968384491072000,
%T A318170 558162298053360000,1953568043186760000
%N A318170 Composite numbers k such that A008480(k) = k.
%C A318170 Knopfmacher and Luca proved that this sequence is finite.
%C A318170 These numbers are named "prime-factor-perfect numbers" by Knopfmacher and Mays and "prime-perfect numbers" by Knopfmacher and Luca.
%H A318170 Arnold Knopfmacher and Florian Luca, <a href="http://dx.doi.org/10.1142/S1793042111004447">On prime-perfect numbers</a>, International Journal of Number Theory, Vol. 7, No. 7 (2011), pp. 1705-1716
%H A318170 Arnold Knopfmacher and M. E. Mays, <a href="https://pdfs.semanticscholar.org/d7ed/31ad7c11cad37442838d6614f658af539ef5.pdf">A survey of factorization counting functions</a>, International Journal of Number Theory, Vol. 1, No. 4 (2005), pp. 563-581, DOI: 10.1142/S1793042105000315.
%e A318170 1781030694643200 = 2^9 * 3^5 * 5^2 * 7^2 * 11^2 * 13 * 17 * 19 * 23 is in the sequence since multinomial(9+5+2+2+2+1+1+1+1,9,5,2,2,2,1,1,1,1) = 1781030694643200.
%t A318170 mul[w_] := Total[w]!/Times @@ (w!); f[n_] := Select[ IntegerPartitions@ n, # == Reverse@ Sort[ Last /@ FactorInteger[mul[#]]] &]; Sort[mul /@ Flatten[f /@ Range[2, 30], 1]] (* terms with sum of exponents in prime factorization <= 30, _Giovanni Resta_, Aug 20 2018 *)
%Y A318170 Cf. A008480.
%K A318170 nonn,more,fini
%O A318170 1,1
%A A318170 _Amiram Eldar_, Aug 20 2018