This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318184 #21 Feb 16 2025 08:33:56 %S A318184 1,1,72,186624,13604889600,24679069470425088, %T A318184 1036715783690392172494848,962459606796748852884396910313472, %U A318184 19112837387997044228759204010262201783812096,7926475921550134182551017087135940323782552453120000000,67406870957147550175650545441605700298239194363455522532832462241792 %N A318184 a(n) = 2^(n * (n - 1)/2) * 3^((n - 1) * (n - 2)) * n^(n - 3). %C A318184 Discriminant of Fermat polynomials. %C A318184 F(0)=0, F(1)=1 and F(n) = 3x F(n - 1) -2 F(n - 2) if n>1. %H A318184 Muniru A Asiru, <a href="/A318184/b318184.txt">Table of n, a(n) for n = 1..39</a> %H A318184 Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, <a href="https://arxiv.org/abs/1808.01264">The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials</a>, arXiv:1808.01264 [math.NT], 2018. %H A318184 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Discriminant.html">Discriminant</a> %H A318184 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FermatPolynomial.html">Fermat Polynomial</a> %p A318184 seq(2^(n*(n-1)/2)*3^((n-1)*(n-2))*n^(n-3),n=1..12); # _Muniru A Asiru_, Dec 07 2018 %t A318184 F[0] = 0; F[1] = 1; F[n_] := F[n] = 3 x F[n - 1] - 2 F[n - 2]; %t A318184 a[n_] := Discriminant[F[n], x]; %t A318184 Array[a, 11] (* _Jean-François Alcover_, Dec 07 2018 *) %o A318184 (PARI) a(n) = 2^(n*(n-1)/2) * 3^((n-1)*(n-2)) * n^(n-3); \\ _Michel Marcus_, Dec 07 2018 %Y A318184 Cf. A193678, A007701, A007701, A193678, A303941. %K A318184 nonn %O A318184 1,3 %A A318184 _Rigoberto Florez_, Aug 20 2018