This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318185 #5 Aug 22 2018 08:32:56 %S A318185 1,1,1,2,3,5,7,12,17,28,41,65,96,150,221,342,506,771,1142,1731,2561, %T A318185 3855,5702,8538,12620,18817,27774,41276,60850,90139 %N A318185 Number of totally transitive rooted trees with n nodes. %C A318185 A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root. Unlike transitive rooted trees (A290689), every terminal subtree of a totally transitive rooted tree is itself totally transitive. %e A318185 The a(8) = 12 totally transitive rooted trees: %e A318185 (o(o)(o(o))) %e A318185 (o(o)(o)(o)) %e A318185 (o(o)(ooo)) %e A318185 (o(oo)(oo)) %e A318185 (oo(o)(oo)) %e A318185 (ooo(o)(o)) %e A318185 (o(ooooo)) %e A318185 (oo(oooo)) %e A318185 (ooo(ooo)) %e A318185 (oooo(oo)) %e A318185 (ooooo(o)) %e A318185 (ooooooo) %e A318185 The a(9) = 17 totally transitive rooted trees: %e A318185 (o(o)(oo(o))) %e A318185 (oo(o)(o(o))) %e A318185 (o(o)(o)(oo)) %e A318185 (oo(o)(o)(o)) %e A318185 (o(o)(oooo)) %e A318185 (o(oo)(ooo)) %e A318185 (oo(o)(ooo)) %e A318185 (oo(oo)(oo)) %e A318185 (ooo(o)(oo)) %e A318185 (oooo(o)(o)) %e A318185 (o(oooooo)) %e A318185 (oo(ooooo)) %e A318185 (ooo(oooo)) %e A318185 (oooo(ooo)) %e A318185 (ooooo(oo)) %e A318185 (oooooo(o)) %e A318185 (oooooooo) %t A318185 totra[n_]:=totra[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[totra/@c]],Complement[Union@@#,#]=={}&],{c,IntegerPartitions[n-1]}]]; %t A318185 Table[Length[totra[n]],{n,20}] %Y A318185 Cf. A000081, A001678, A004111, A279861, A290689, A290760, A290822, A318186, A318187. %K A318185 nonn,more %O A318185 1,4 %A A318185 _Gus Wiseman_, Aug 20 2018