This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318186 #6 Aug 22 2018 08:33:05 %S A318186 1,2,4,6,8,12,14,16,18,24,28,32,36,38,42,48,54,56,64,72,76,78,84,96, %T A318186 98,106,108,112,114,126,128,144,152,156,162,168,192,196,212,216,222, %U A318186 224,228,234,252,256,262,266,288,294,304,312,318,324,336,342,366,378 %N A318186 Totally transitive numbers. Matula-Goebel numbers of totally transitive rooted trees. %C A318186 A number x is totally transitive if (1) whenever prime(y) divides x it follows that y is totally transitive and (2) if prime(y) divides x and prime(z) divides y then prime(z) also divides x. %e A318186 The sequence of all totally transitive rooted trees together with their Matula-Goebel numbers begins: %e A318186 1: o %e A318186 2: (o) %e A318186 4: (oo) %e A318186 6: (o(o)) %e A318186 8: (ooo) %e A318186 12: (oo(o)) %e A318186 14: (o(oo)) %e A318186 16: (oooo) %e A318186 18: (o(o)(o)) %e A318186 24: (ooo(o)) %e A318186 28: (oo(oo)) %e A318186 32: (ooooo) %e A318186 36: (oo(o)(o)) %e A318186 38: (o(ooo)) %e A318186 42: (o(o)(oo)) %e A318186 48: (oooo(o)) %e A318186 54: (o(o)(o)(o)) %e A318186 56: (ooo(oo)) %e A318186 64: (oooooo) %e A318186 72: (ooo(o)(o)) %e A318186 76: (oo(ooo)) %e A318186 78: (o(o)(o(o))) %e A318186 84: (oo(o)(oo)) %e A318186 96: (ooooo(o)) %e A318186 98: (o(oo)(oo)) %t A318186 subprimes[n_]:=If[n==1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]]; %t A318186 trmgQ[n_]:=Or[n==1,And[Divisible[n,Times@@subprimes[n]],And@@Cases[FactorInteger[n],{p_,_}:>trmgQ[PrimePi[p]]]]]; %t A318186 Select[Range[100],trmgQ] %Y A318186 Cf. A000081, A001678, A004111, A007097, A061775, A276625, A279861, A290689, A290760, A290822, A291636, A318185, A318187. %K A318186 nonn %O A318186 1,2 %A A318186 _Gus Wiseman_, Aug 20 2018