This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318187 #4 Aug 22 2018 08:33:13 %S A318187 2,2,4,8,16,32,62,122,234,451,857,1630,3068,5772,10778,20093,37259 %N A318187 Number of totally transitive rooted trees with n leaves. %C A318187 A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root. %e A318187 The a(5) = 16 totally transitive rooted trees with 5 leaves: %e A318187 (o(o)(o(o)(o))) %e A318187 (o(o)(o)(o(o))) %e A318187 (o(o)(o)(o)(o)) %e A318187 (o(o)(oo(o))) %e A318187 (oo(o)(o(o))) %e A318187 (o(o)(o)(oo)) %e A318187 (oo(o)(o)(o)) %e A318187 (o(o)(ooo)) %e A318187 (o(oo)(oo)) %e A318187 (oo(o)(oo)) %e A318187 (ooo(o)(o)) %e A318187 (o(oooo)) %e A318187 (oo(ooo)) %e A318187 (ooo(oo)) %e A318187 (oooo(o)) %e A318187 (ooooo) %t A318187 totralv[n_]:=totralv[n]=If[n==1,{{},{{}}},Join@@Table[Select[Union[Sort/@Tuples[totralv/@c]],Complement[Union@@#,#]=={}&],{c,Select[IntegerPartitions[n],Length[#]>1&]}]]; %t A318187 Table[Length[totralv[n]],{n,8}] %Y A318187 Cf. A000081, A000669, A001678, A004111, A050381, A279861, A290689, A290760, A290822, A318185, A318186. %K A318187 nonn,more %O A318187 1,1 %A A318187 _Gus Wiseman_, Aug 20 2018