This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318200 #18 Aug 21 2018 11:44:50 %S A318200 1,884,961350,1166694360,1514952626460,2059469884770480, %T A318200 2894070055573717020,4170217137221937001200,6128342594004497520113460, %U A318200 9149429785497381327907574160,13838512550564789258460205917000,21159569553888757349236649959188000,32653750015126185895018415883446910000 %N A318200 Expansion of Hypergeometric function F(17/12, 13/12; 3; 1728*x) in powers of x. %C A318200 A145493 is the convolution of A092870 and this sequence. %H A318200 Seiichi Manyama, <a href="/A318200/b318200.txt">Table of n, a(n) for n = 0..309</a> %H A318200 M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998 %F A318200 a(n) = (2*12^n/(n!*(n+2)!)) * Product_{k=0..n-1} (12k+17)*(12k+13). %F A318200 a(n) = 2*(12*n+1)*(12*n+5)*A092870(n)/(5*(n+1)*(n+2)). %F A318200 a(n) ~ 2^(6*n + 5) * 3^(3*n + 2) / (5 * Gamma(1/12) * Gamma(5/12) * n^(3/2)). - _Vaclav Kotesovec_, Aug 21 2018 %o A318200 (PARI) {a(n) = 2*12^n/(n!*(n+2)!)*prod(k=0, n-1, (12*k+17)*(12*k+13))} %Y A318200 F([b/2]+5/12, [(b+1)/2]+1/12; b+1; 1728*x): A092870 (b=0), A318174 (b=1), this sequence (b=2), A318201 (b=3). %Y A318200 Cf. A145493. %K A318200 nonn %O A318200 0,2 %A A318200 _Seiichi Manyama_, Aug 21 2018