This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318227 #11 Dec 14 2020 01:36:51 %S A318227 1,1,1,3,5,14,38,114,330,1054,3483,11841,41543,149520,552356,2084896, %T A318227 8046146,31649992,127031001,518434863,2153133594,9081863859, %U A318227 38909868272,169096646271,745348155211,3329032020048,15063018195100,68998386313333,319872246921326,1500013368166112 %N A318227 Number of inequivalent leaf-colorings of rooted identity trees with n nodes. %C A318227 In a rooted identity tree, all branches directly under any given branch are different. %C A318227 The leaves are colored after selection of the tree. Since all trees are asymmetric, the symmetry group of the leaves will be the identity group and a tree with k leaves will have Bell(k) inequivalent leaf-colorings. - _Andrew Howroyd_, Dec 10 2020 %H A318227 Andrew Howroyd, <a href="/A318227/b318227.txt">Table of n, a(n) for n = 1..200</a> %F A318227 a(n) = Sum_{k=1..n} A055327(n,k) * A000110(k). - _Andrew Howroyd_, Dec 10 2020 %e A318227 Inequivalent representatives of the a(6) = 14 leaf-colorings: %e A318227 (1(1(1))) ((1)((1))) (1(((1)))) ((1((1)))) (((1(1)))) (((((1))))) %e A318227 (1(1(2))) ((1)((2))) (1(((2)))) ((1((2)))) (((1(2)))) %e A318227 (1(2(1))) %e A318227 (1(2(2))) %e A318227 (1(2(3))) %t A318227 idt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[idt/@c]],UnsameQ@@#&],{c,IntegerPartitions[n-1]}]]; %t A318227 Table[Sum[BellB[Count[tree,{},{0,Infinity}]],{tree,idt[n]}],{n,16}] %o A318227 (PARI) \\ bell(n) is A000110(n). %o A318227 WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} %o A318227 bell(n)={sum(k=1, n, stirling(n,k,2))} %o A318227 seq(n)={my(v=[y], b=vector(n,k,bell(k))); for(n=2, n, v=concat(v[1], WeighMT(v))); vector(n, k, sum(i=1, k, polcoef(v[k],i)*b[i]))} \\ _Andrew Howroyd_, Dec 10 2020 %Y A318227 Cf. A000081, A001190, A001678, A003238, A004111, A290689, A318185, A304486. %Y A318227 Cf. A318226, A318228, A318229, A318230, A318231, A318234. %Y A318227 Cf. A000110 (Bell numbers), A055327, A301342. %K A318227 nonn %O A318227 1,4 %A A318227 _Gus Wiseman_, Aug 21 2018 %E A318227 Terms a(17) and beyond from _Andrew Howroyd_, Dec 10 2020