This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318230 #12 Dec 14 2020 14:19:17 %S A318230 1,2,4,18,79,474,3166,24451,208702,1958407,19919811,217977667, %T A318230 2547895961,31638057367,415388265571,5743721766718,83356613617031, %U A318230 1265900592208029,20064711719120846,331153885800672577,5679210649417608867,101017359002718628295,1860460510677429522171 %N A318230 Number of inequivalent leaf-colorings of binary rooted trees with 2n + 1 nodes. %H A318230 Andrew Howroyd, <a href="/A318230/b318230.txt">Table of n, a(n) for n = 0..49</a> %e A318230 Inequivalent representatives of the a(3) = 18 leaf-colorings of binary rooted trees with 7 nodes: %e A318230 (1(1(11))) ((11)(11)) %e A318230 (1(1(12))) ((11)(12)) %e A318230 (1(1(22))) ((11)(22)) %e A318230 (1(1(23))) ((11)(23)) %e A318230 (1(2(11))) ((12)(12)) %e A318230 (1(2(12))) ((12)(13)) %e A318230 (1(2(13))) ((12)(34)) %e A318230 (1(2(22))) %e A318230 (1(2(23))) %e A318230 (1(2(33))) %e A318230 (1(2(34))) %o A318230 (PARI) \\ See links in A339645 for combinatorial species functions. %o A318230 cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, my(p=x*Ser(v[1..n-1])); v[n]=polcoef(p^2 + if(n%2==0, sRaise(p,2)), n)/2); x*Ser(v)} %o A318230 InequivalentColoringsSeq(cycleIndexSeries(20)) \\ _Andrew Howroyd_, Dec 11 2020 %Y A318230 Cf. A000081, A001190, A001678, A003238, A004111, A111299, A290689, A304486. %Y A318230 Cf. A318226, A318227, A318228, A318229, A318231, A318234, A319590, A339645. %K A318230 nonn %O A318230 0,2 %A A318230 _Gus Wiseman_, Aug 21 2018 %E A318230 Terms a(5) and beyond from _Andrew Howroyd_, Dec 10 2020