This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318246 #8 Aug 22 2018 06:43:58 %S A318246 1,3,9,756,6642,118341,388484100,10474704297,564988219686, %T A318246 22878342156600,12158489037532504050,984798697643349485688, %U A318246 159533936817604246934415,19383278088136495245171156,2616739259326831261950662430,608267042060342812170824926328855679 %N A318246 a(n) = [x^n] Product_{k>=1} (1 + 3^n*x^k). %C A318246 Conjecture: In general, if m > 1 and a(n) = [x^n] Product_{k>=1} (1 + m^n * x^k), then log(a(n)) ~ log(m)*(sqrt(2)*n^(3/2) - n/2). %H A318246 Vaclav Kotesovec, <a href="/A318246/b318246.txt">Table of n, a(n) for n = 0..135</a> %F A318246 Conjecture: log(a(n)) ~ log(3)*sqrt(2)*n^(3/2). %t A318246 nmax = 20; Table[SeriesCoefficient[Product[(1+3^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] %Y A318246 Cf. A292414. %K A318246 nonn %O A318246 0,2 %A A318246 _Vaclav Kotesovec_, Aug 22 2018