cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318246 a(n) = [x^n] Product_{k>=1} (1 + 3^n*x^k).

This page as a plain text file.
%I A318246 #8 Aug 22 2018 06:43:58
%S A318246 1,3,9,756,6642,118341,388484100,10474704297,564988219686,
%T A318246 22878342156600,12158489037532504050,984798697643349485688,
%U A318246 159533936817604246934415,19383278088136495245171156,2616739259326831261950662430,608267042060342812170824926328855679
%N A318246 a(n) = [x^n] Product_{k>=1} (1 + 3^n*x^k).
%C A318246 Conjecture: In general, if m > 1 and a(n) = [x^n] Product_{k>=1} (1 + m^n * x^k), then log(a(n)) ~ log(m)*(sqrt(2)*n^(3/2) - n/2).
%H A318246 Vaclav Kotesovec, <a href="/A318246/b318246.txt">Table of n, a(n) for n = 0..135</a>
%F A318246 Conjecture: log(a(n)) ~ log(3)*sqrt(2)*n^(3/2).
%t A318246 nmax = 20; Table[SeriesCoefficient[Product[(1+3^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%Y A318246 Cf. A292414.
%K A318246 nonn
%O A318246 0,2
%A A318246 _Vaclav Kotesovec_, Aug 22 2018