cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318248 Expansion of Product_{k>=1} (1 + Fibonacci(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 18, 35, 63, 123, 220, 411, 750, 1387, 2498, 4649, 8308, 15150, 27446, 49638, 88754, 161280, 287831, 516770, 924956, 1655166, 2944850, 5272056, 9348047, 16631195, 29569572, 52421323, 92665614, 164437988, 290243745, 512649342, 904774082
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1 + Fibonacci[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += Fibonacci[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

Formula

From Vaclav Kotesovec, Aug 24 2018: (Start)
a(n) ~ c * A000045(n) * exp(r*sqrt(n)) / n^(3/4) ~ c * exp(r*sqrt(n)) * phi^n / (sqrt(5) * n^(3/4)), where r = 2*sqrt(-polylog(2, -1/sqrt(5))) = 1.273105657580344020952907652385896290122122879833..., c = 0.4521555113342405268628694407039776... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Equivalently, r = 2*sqrt(Pi^2/6 + log(5)^2/8 + polylog(2, -sqrt(5))). (End)