A318253 Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals.
0, 0, 1, 0, 1, 0, 0, 1, -2, 0, 0, 1, -9, 16, 0, 0, 1, -34, 477, -272, 0, 0, 1, -125, 11056, -74601, 7936, 0, 0, 1, -461, 249250, -14873104, 25740261, -353792, 0, 0, 1, -1715, 5699149, -2886735625, 56814228736, -16591655817, 22368256, 0, 0, 1, -6434, 132908041, -574688719793, 122209131374375, -495812444583424, 17929265150637, -1903757312, 0
Offset: 1
Examples
[n\k][0 1 2 3 4 5 ...] ------------------------------------------------------------------ [1] 0, 1, 0, 0, 0, 0, ... [A063524] [2] 0, 1, -2, 16, -272, 7936, ... [A000182] [3] 0, 1, -9, 477, -74601, 25740261, ... [A293951] [4] 0, 1, -34, 11056, -14873104, 56814228736, ... [A273352] [5] 0, 1, -125, 249250, -2886735625, 122209131374375, ... [A318258] [6] 0, 1, -461, 5699149, -574688719793, 272692888959243481, ... [A010763]
Programs
-
Maple
# Prints square array row-wise. The function OmegaPolynomial is defined in A318146. for n from 1 to 6 do seq(coeff(OmegaPolynomial(n, k), x, 1), k=0..6) od; # In the sequence format: 0, seq(seq(coeff(OmegaPolynomial(n-k+1, k), x, 1), k=0..n), n=1..9); # Alternatively, based on the recurrence of the André numbers: ANum := proc(m, n) option remember; if n = 0 then return 1 fi; `if`(modp(n, m) = 0, -1, 1); [seq(m*k, k=0..(n-1)/m)]; %%*add(binomial(n, k)*ANum(m, k), k in %) end: TNum := proc(n,k) if k=1 then 1 elif k=0 or n=1 then 0 else ANum(n, n*k-1) fi end: for n from 1 to 6 do seq(TNum(n, k), k = 0..6) od;
-
Mathematica
OmegaPolynomial[m_, n_] := Module[{S}, S = Series[MittagLefflerE[m, z]^x, {z, 0, 10}]; Expand[(m*n)! Coefficient[S, z, n]]]; T[n_, k_] := D[OmegaPolynomial[n, k], x] /. x -> 0; Table[T[n - k, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2023 *)
-
Sage
# Prints the array row-wise. The function OmegaPolynomial is in A318146. for m in (1..6): print([0] + [list(OmegaPolynomial(m, n))[1] for n in (1..6)]) # Alternatively, based on the recurrence of the André numbers: @cached_function def ANum(m, n): if n == 0: return 1 t = [m*k for k in (0..(n-1)//m)] s = sum(binomial(n, k)*ANum(m, k) for k in t) return -s if m.divides(n) else s def TNum(m, n): if n == 1: return 1 if n == 0 or m == 1: return 0 return ANum(m, m*n-1) for m in (1..6): print([TNum(m, n) for n in (0..6)])
Formula
T(n, k) is the derivative of OmegaPolynomial(n, k) evaluated at x = 0.
Comments