A318254 Associated Omega numbers of order 2, triangle T(n,k) read by rows for n >= 0 and 0 <= k <= n.
1, 1, 1, 1, 3, -2, 1, 5, -20, 16, 1, 7, -70, 336, -272, 1, 9, -168, 2016, -9792, 7936, 1, 11, -330, 7392, -89760, 436480, -353792, 1, 13, -572, 20592, -466752, 5674240, -27595776, 22368256, 1, 15, -910, 48048, -1750320, 39719680, -482926080, 2348666880, -1903757312
Offset: 0
Examples
Triangle starts: [0] [1] [1] [1, 1] [2] [1, 3, -2] [3] [1, 5, -20, 16] [4] [1, 7, -70, 336, -272] [5] [1, 9, -168, 2016, -9792, 7936] [6] [1, 11, -330, 7392, -89760, 436480, -353792] [7] [1, 13, -572, 20592, -466752, 5674240, -27595776, 22368256]
Crossrefs
Programs
-
Maple
# The function TNum is defined in A318253. T := (m, n, k) -> `if`(k=0, 1, binomial(m*n-1, m*(n-k))*TNum(m, k)): for n from 0 to 6 do seq(T(2, n, k), k=0..n) od;
-
Sage
def AssociatedOmegaNumberTriangle(m, len): R = ZZ[x]; B = [1]*len; L = [R(1)]*len; T = [[1]] for k in (1..len-1): s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1)) B[k] = c = 1 - s.subs(x=1); L[k] = R(expand(s + c*x)) T.append([1] + [binomial(m*k-1, m*(k-j))*B[j] for j in (1..k)]) return T A318254Triangle = lambda dim: AssociatedOmegaNumberTriangle(2, dim) print(A318254Triangle(8))
Formula
T(m, n, k) = binomial(m*n-1, m*(n-k))*A318253(m, k) for k>0 and 1 for k=0. We consider here the case m=2.
Comments