cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318256 a(n) = (denominator of B(n,x)) / (the squarefree kernel of n+1), where B(n,x) is the n-th Bernoulli polynomial.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 6, 3, 10, 1, 6, 1, 210, 15, 2, 3, 30, 5, 210, 21, 110, 15, 30, 5, 546, 21, 14, 1, 30, 1, 462, 231, 1190, 105, 6, 1, 51870, 1365, 70, 21, 2310, 55, 2310, 105, 322, 105, 210, 35, 6630, 663, 286, 33, 330, 55, 798, 57, 290, 15, 30, 1, 930930, 15015
Offset: 0

Views

Author

Peter Luschny, Sep 12 2018

Keywords

Examples

			a(59) = 1 because there exist no number which satisfies the definition (and the product of an empty set is 1).
a(60) = 930930 because {2, 3, 5, 7, 11, 13, 31} are the only primes which satisfy the definition.
The denominator of the Bernoulli polynomial B_n(x) equals the squarefree kernel of n+1 if n is in {0, 1, 3, 5, 9, 11, 27, 29, 35, 59}. These might be the only numbers with this property.
		

Crossrefs

a(n) = A144845(n) / A007947(n+1).
Cf. A324370 (same sequence with offset 1).

Programs

  • Maple
    a := n -> denom(bernoulli(n, x)) / mul(p, p in numtheory:-factorset(n+1)):
    seq(a(n), n=0..61);
  • Mathematica
    sfk[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := (BernoulliB[n, x] // Together // Denominator)/sfk[n+1];
    Table[a[n], {n, 0, 61}] (* Jean-François Alcover, Feb 14 2019 *)
  • Sage
    def A318256(n): return mul([p for p in (2..(n+2)//(2+n%2))
                    if is_prime(p)
                    and not p.divides(n+1)
                    and sum((n+1).digits(base=p)) >= p])
    print([A318256(n) for n in (0..61)])

Formula

Let Q(n) = {p <= floor((n + 2)/(2 + n mod 2)) and p is prime and p does not divide n + 1 and the sum of the digits in base p of n+1 is at least p} then a(n) = Product_{p in Q(n)} p. (See the Kellner & Sondow links.)
a(n) = denominator(Bernoulli'(n+1, x)), where ' denotes d/dx. - Peter Luschny, Oct 15 2023