cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A318259 Generalized Worpitzky numbers W_{m}(n,k) for m = 2, n >= 0 and 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, -1, 1, 5, -11, 6, -61, 211, -240, 90, 1385, -6551, 11466, -8820, 2520, -50521, 303271, -719580, 844830, -491400, 113400, 2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400, -199360981, 1704396331, -6187282920, 12372329970, -14727913200, 10443232800, -4086482400, 681080400
Offset: 0

Views

Author

Peter Luschny, Sep 06 2018

Keywords

Comments

The triangle can be seen as a member of a family of generalized Worpitzky numbers A028246. See the cross-references for some other members.
The unsigned numbers have row sums A210657 which points to an interpretation of the unsigned numbers as a refinement of marked Schröder paths (see Josuat-Vergès and Kim).

Examples

			[0] [      1]
[1] [     -1,         1]
[2] [      5,       -11,        6]
[3] [    -61,       211,     -240,        90]
[4] [   1385,     -6551,    11466,     -8820,     2520]
[5] [ -50521,    303271,  -719580,    844830,  -491400,    113400]
[6] [2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400]
		

Crossrefs

Row sums are A000007, alternating row sums are A210657.
Cf. T(n,n) = A000680, T(n, 0) = A028296(n) (Gudermannian), A000364 (Euler secant), A241171 (Joffe's differences), A028246 (Worpitzky).
Cf. A167374 (m=0), A028246 & A163626 (m=1), this seq (m=2), A318260 (m=3).

Programs

  • Maple
    Joffe := proc(n, k) option remember; if k > n then 0 elif k = 0 then k^n else
    k*(2*k-1)*Joffe(n-1, k-1)+k^2*Joffe(n-1, k) fi end:
    T := (n, k) -> add((-1)^(k-j)*binomial(n-j, n-k)*add((-1)^i*Joffe(n,i)*
    binomial(n-i, j), i=0..n), j=0..k):
    seq(seq(T(n, k), k=0..n), n=0..6);
  • Mathematica
    Joffe[0, 0] = 1; Joffe[n_, k_] := Joffe[n, k] = If[k>n, 0, If[k == 0,k^n, k*(2*k-1)*Joffe[n-1, k-1] + k^2*Joffe[n-1, k]]];
    T[n_, k_] := Sum[(-1)^(k-j)*Binomial[n-j, n-k]*Sum[(-1)^i*Joffe[n, i]* Binomial[n-i, j], {i, 0, n}], {j, 0, k}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2019, from Maple *)
  • Sage
    def EW(m, n):
        @cached_function
        def S(m, n):
            R. = ZZ[]
            if n == 0: return R(1)
            return R(sum(binomial(m*n, m*k)*S(m, n-k)*x for k in (1..n)))
        s = S(m, n).list()
        c = lambda k: sum((-1)^(k-j)*binomial(n-j,n-k)*
            sum((-1)^i*s[i]*binomial(n-i,j) for i in (0..n)) for j in (0..k))
        return [c(k) for k in (0..n)]
    def A318259row(n): return EW(2, n)
    flatten([A318259row(n) for n in (0..6)])

Formula

Let S(n, k) denote Joffe's central differences of zero (A241171) extended to the case n = 0 and k = 0 by prepending a column 1, 0, 0, 0,... to the triangle, then:
T(n,k) = Sum_{j=0..k}((-1)^(k-j)*C(n-j,n-k)*Sum_{i=0..n}((-1)^i*S(n,i)*C(n-i,j))).
Showing 1-1 of 1 results.