This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318262 #33 Mar 14 2020 05:37:45 %S A318262 6,12,14,20,24,28,30,40,48,56,60,62,72,80,84,96,112,120,124,126,144, %T A318262 168,192,224,240,248,252,254,272,288,320,336,340,384,408,448,480,496, %U A318262 504,508,510,544,576,584,640,672,680,768,816,896,960,992,1008,1016,1020 %N A318262 Numbers m such that 2^phi(m) mod m is a prime power (in the sense of A246655). %C A318262 m is in this sequence if and only if 2^phi(m) mod m = 2^k for some k > 0. %C A318262 There is no prime power in this sequence. Perfect power terms of this sequence are 144, 576, 9216, 36864, 589824, 884736, 1638400, 2359296, 3211264, 6553600, 7077888, ... - _Altug Alkan_, Sep 04 2018 %e A318262 The odd part of the first few terms can be arranged as follows: %e A318262 3, %e A318262 3, 7, 5, %e A318262 3, 7, 15, 5, %e A318262 3, 7, 15, 31, 9, 5, 21, %e A318262 3, 7, 15, 31, 63, 9, 21, %e A318262 3, 7, 15, 31, 63, 127, 17, 9, 5, 21, 85, %t A318262 Select[Range[2^10], And[PrimePowerQ@ #, ! PrimeQ@ #] &@ Mod[2^EulerPhi@ #, #] &] (* _Michael De Vlieger_, Sep 04 2018 *) %o A318262 (Sage) %o A318262 def isA318262(n): %o A318262 m = power_mod(2, euler_phi(n), n) %o A318262 return m.is_prime_power() %o A318262 def A318262_list(search_bound): %o A318262 return [n for n in range(2,search_bound+1,2) if isA318262(n)] %o A318262 print(A318262_list(1020)) %o A318262 (PARI) isok(n) = isprimepower(lift(Mod(2, n)^eulerphi(n))); \\ _Michel Marcus_, Sep 06 2018 %Y A318262 Cf. A000010, A001597, A118372, A246655, A292544, A318623, A318145. %K A318262 nonn %O A318262 1,1 %A A318262 _Peter Luschny_, Sep 03 2018