This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318274 #38 Feb 16 2025 08:33:56 %S A318274 1,1,1,1,2,1,1,3,3,1,1,4,4,4,1,1,5,5,5,5,1,1,6,6,6,6,6,1,1,7,7,7,7,7, %T A318274 7,1,1,8,8,8,8,8,8,8,1,1,9,9,9,9,9,9,9,9,1,1,10,10,10,10,10,10,10,10, %U A318274 10,1,1,11,11,11,11,11,11,11,11,11,11,1,1,12 %N A318274 Triangle read by rows: T(n,k) = n for 0 < k < n and T(n,0) = T(n,n) = 1. %C A318274 T(n,k) is the number of binary bitonic words of length n having k letters 1. %C A318274 Draw a circular rosette such that all the circles contain the rosette's center. Then T(n,k) is also the number of regions in the plane located inside k circles. In fact, a region can be encoded by a binary bitonic word as follows: label each circle from 1 to n in clockwise or counterclockwise order, then write a length n binary word such that the i-th letter indicates whether the concerned region does (write 1) or does not (write 0) lie inside the i-th circle. %C A318274 Row n is a partition of A014206(n-1) for n > 0. %H A318274 N. Alon, H. Last, R. Pinchasi and M. Sharir, <a href="http://dx.doi.org/10.1007/s00454-001-0043-x">On the complexity of arrangements of circles in the plane</a>, Discrete Comput. Geom. Vol. 26 (2001), 465-492. %H A318274 K. E. Batcher, <a href="https://doi.org/10.1145/1468075.1468121">Sorting networks and their applications</a>, Proceed. AFIPS Spring Joint Comput. Conf. 32 (1968), 307-314. %H A318274 W. Denton, <a href="https://www.miskatonic.org/2014/12/19/intersecting-circles/">Intersecting circles</a>. %H A318274 D. Kinsela, <a href="http://www.90thkilmacudscouts.com/maths/circles_lines_soln.html">Plane division by Lines AND Circles (Problem, Analysis and Solution)</a>. %H A318274 H. W. Lang, <a href="https://web.archive.org/web/20200203130135/http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm">Bitonic sequences</a>. %H A318274 F. Ramaharo, <a href="https://arxiv.org/abs/1712.06543">Enumerating the states of the twist knot</a>, arXiv:1712.06543 [math.CO], 2017. %H A318274 Franck Maminirina Ramaharo, <a href="/A318274/a318274.pdf">Illustration of initial terms</a> %H A318274 P. Rosin, <a href="http://dx.doi.org/10.1007/s00004-001-0026-5">Rosettes and other arrangements of circles</a>, Nexus Network Journal Vol. 3 (2001), 113-126. %H A318274 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PlaneDivisionbyCircles.html">Plane Division by Circles</a>. %F A318274 The n-th row are the coefficients in the expansion of 1 + x^n + n*x*(1 - x^(n - 1))/(1 - x), n > 0. %F A318274 G.f. for column k > 0: (((1 - k)*x^2 - (1 - k)*x + 1)*x^k)/(x - 1)^2. %F A318274 T(n+1,n-k) - n + k = A128227(n,k). %e A318274 Triangle begins: %e A318274 n\k| 0 1 2 3 4 5 6 7 8 %e A318274 ---+-------------------------- %e A318274 0 | 1 %e A318274 1 | 1 1 %e A318274 2 | 1 2 1 %e A318274 3 | 1 3 3 1 %e A318274 4 | 1 4 4 4 1 %e A318274 5 | 1 5 5 5 5 1 %e A318274 6 | 1 6 6 6 6 6 1 %e A318274 7 | 1 7 7 7 7 7 7 1 %e A318274 8 | 1 8 8 8 8 8 8 8 1 %e A318274 ... %e A318274 For n = 5, the binary bitonic words are %e A318274 (k = 0) 00000; %e A318274 (k = 1) 10000, 01000, 00100, 00010, 00001; %e A318274 (k = 2) 11000, 01100, 00110, 00011, 10001; %e A318274 (k = 3) 11100, 01110, 00111, 10011, 11001; %e A318274 (k = 4) 11110, 01111, 10111, 11011, 11101; %e A318274 (k = 5) 11111. %t A318274 Table[If[k == n || k == 0, 1, n], {n, 0, 20}, {k, 0, n}] // Flatten %o A318274 (Maxima) %o A318274 T(n, k) := if k = 0 or k = n then 1 else if k < n then n else 0$ %o A318274 for n:0 thru 10 do print(makelist(T(n, k), k, 0, n)); %o A318274 (PARI) T(n,k) = if ((k==0) || (k==n), 1, n); %o A318274 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Aug 25 2018 %o A318274 (Python) %o A318274 from math import isqrt %o A318274 def A318274(n): return 1 if 0<=(k:=n+1<<1)-(r:=(m:=isqrt(k))*(m+1))<=2 else m-(k<=r) # _Chai Wah Wu_, Nov 09 2024 %Y A318274 Row sums: A014206 preceded by 1. %Y A318274 Cf. A007318, A128227. %K A318274 nonn,easy,tabl %O A318274 0,5 %A A318274 _Franck Maminirina Ramaharo_, Aug 23 2018