This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318276 #30 Jan 01 2019 12:05:38 %S A318276 2,3,4,5,6,7,8,9,22,23,24,26,27,28,29,33,34,35,36,37,38,39,44,46,47, %T A318276 48,49,57,66,67,68,77,79,88,89,99,222,223,224,226,227,228,229,233,234, %U A318276 236,237,238,244,246,248,249,266,267,277,278,279,288,289,299,333,334 %N A318276 Numbers with digits in nondecreasing order without digit 1 whose multiplicative digital root is not 0. %C A318276 This sequence is a primitive sequence of A299690 because terms of that sequence can be found using this; permuting digits of terms of this sequence gives terms in A299690. %C A318276 This sequence is also a primitive sequence to A318275 as prepending 0 or more ones to terms in this sequence gives terms in A318275. %C A318276 This sequence is finite because it's a subsequence of the finite sequence A299690. %H A318276 David A. Corneth, <a href="/A318276/b318276.txt">Table of n, a(n) for n = 1..12413</a> %t A318276 Select[Range[333], And[FreeQ[IntegerDigits@ #, 1], FixedPoint[Times @@ IntegerDigits@ # &, #] != 0, AllTrue[Differences@ IntegerDigits@ #, # >= 0 &]] &] (* _Michael De Vlieger_, Aug 25 2018 *) %o A318276 (PARI) mdr(n)=n = fromdigits(n); while(n>9, n=factorback(digits(n))); n \\ from _Charles R Greathouse IV_ at A299690. %o A318276 uptoQdigits(n) = {my(res = List()); for(i = 1, n, forvec(x = vector(i, j, [2, 9]), c = mdr(x); if(c != 0, listput(res, fromdigits(x))), 1)); res} \\ _David A. Corneth_, Dec 31 2018 %Y A318276 Cf. A299690, A318275. %K A318276 nonn,base,look,fini %O A318276 1,1 %A A318276 _David A. Corneth_, Aug 23 2018 %E A318276 Data corrected by _David A. Corneth_, Dec 31 2018