cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318295 Prime numbers whose digits can be permuted in multiple ways to yield primes.

This page as a plain text file.
%I A318295 #31 Sep 25 2024 18:03:25
%S A318295 103,107,113,131,137,149,157,163,167,173,179,197,199,307,311,317,337,
%T A318295 359,373,379,389,397,419,491,571,593,613,617,631,701,709,719,733,739,
%U A318295 751,761,839,907,919,937,941,953,971,983,991,1009,1013,1019,1021,1031,1033
%N A318295 Prime numbers whose digits can be permuted in multiple ways to yield primes.
%C A318295 From _Robert Israel_, Sep 06 2018: (Start)
%C A318295 "Multiple ways" here means more than one nontrivial permutation other than the identity permutation, i.e., there are at least 3 different primes formed by permuting digits of this prime.
%C A318295 Leading 0's are allowed in the permutations. (End)
%H A318295 Robert Israel, <a href="/A318295/b318295.txt">Table of n, a(n) for n = 1..10000</a>
%e A318295 131 belongs to this sequence as there are two nontrivial permutations of its digits which yield other primes, namely 113 and 311.
%e A318295 137 also belongs to this sequence. Even though 371, 713 and 731 are composite, 173 and 317 are prime, satisfying the requirement.
%e A318295 139 does not belong in this sequence. Although 193 is prime, 319, 391, 913 and 931 are all composite.
%p A318295 filter:= proc(n) local L,Lp,t,i,m,x;
%p A318295   if not isprime(n) then return false fi;
%p A318295   L:= convert(n,base,10);
%p A318295   m:= nops(L);
%p A318295   Lp:= combinat:-permute(L);
%p A318295   t:= 1;
%p A318295   for i from 1 to nops(Lp) do
%p A318295     if Lp[i]=L then next fi;
%p A318295     x:= add(Lp[i][j]*10^(j-1),j=1..m);
%p A318295     if isprime(x) then
%p A318295       t:= t+1;
%p A318295       if t = 3 then return true fi;
%p A318295     fi
%p A318295   od;
%p A318295   false
%p A318295 end proc:
%p A318295 select(filter, [seq(i,i=11..2000,2)]); # _Robert Israel_, Sep 06 2018
%t A318295 Select[Prime[Range[200]], Count[PrimeQ[Map[FromDigits, Permutations[IntegerDigits[#]]]], True] > 2 &] (* _Alonso del Arte_, Aug 24 2018 *)
%t A318295 Select[Prime[Range[200]],Count[FromDigits/@Rest[Permutations[IntegerDigits[#]]],_?PrimeQ]>1&] (* _Harvey P. Dale_, Sep 25 2024 *)
%o A318295 (Python)
%o A318295 from itertools import *
%o A318295 nmax=1000
%o A318295 def is_prime(num):
%o A318295     if num == 0 or num == 1: return(0)
%o A318295     for k in range(2, num):
%o A318295        if (num % k) == 0:
%o A318295            return(0)
%o A318295     return(1)
%o A318295 ris = ""
%o A318295 for i in range(nmax):
%o A318295     f=0
%o A318295     lf=[]
%o A318295     if is_prime(i):
%o A318295        for p in permutations(str(i), len(str(i))):
%o A318295             k=int(''.join(p))
%o A318295             if k!=i and is_prime(k):
%o A318295                 if k not in lf:
%o A318295                     f+=1
%o A318295                     lf.append(k)
%o A318295                 if f>1:
%o A318295                     ris = ris+str(i)+","
%o A318295                     break
%o A318295 print(ris)
%Y A318295 Subsequence of A055387.
%K A318295 nonn,base
%O A318295 1,1
%A A318295 _Pierandrea Formusa_, Aug 23 2018
%E A318295 More terms from _Giovanni Resta_, Sep 03 2018