This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318298 #19 Sep 05 2018 09:57:57 %S A318298 12,14,154,1196,14112,21888,53625,226512,279174,358435,821142,1222452, %T A318298 1665664,2228814,2454375,2614248,2872116,4425729,5751746,8653645, %U A318298 9551256,15261246,19427226,19644898,19775998,21271488,27676935,29591892,29956212,41878242,45574144 %N A318298 Numbers whose set of decimal digits coincides with the set of the indices of their prime factors. %C A318298 It is impossible to find a number with 9 distinct decimal digits because the prime factors 2 and 5 generate d_k = 0. %C A318298 The finite subsequence containing the smallest numbers having at least j distinct digits for j = 2, 3, ..., 8, is 12, 154, 53625, 279174, 19427226, 82447365 and 41762985264. %H A318298 Giovanni Resta, <a href="/A318298/b318298.txt">Table of n, a(n) for n = 1..10000</a> %e A318298 1196 is in the sequence because the prime factors are {2, 13, 23} = {prime(1), prime(6), prime(9)}, and 1196 contains the decimal digits 1, 6, 9. %p A318298 with(numtheory):nn:=10^8: %p A318298 for n from 1 to nn do: %p A318298 lst:={}:d:=factorset(n):n0:=nops(d): %p A318298 q:=convert(n,base,10):n1:=nops(q): %p A318298 p:=product(āq[i]ā, āiā=1..n1): %p A318298 if p<>0 %p A318298 then %p A318298 for i from 1 to n1 do : %p A318298 lst:=lst union {ithprime(q[i])}: %p A318298 od: %p A318298 if lst = d %p A318298 then %p A318298 print(n): %p A318298 else %p A318298 fi:fi: %p A318298 od: %t A318298 ok[n_] := Block[{f = First /@ FactorInteger[n], d}, Last@f < 24 && Min[d = Union@ IntegerDigits@ n] > 0 && Prime[d] == f]; Select[Range[10^6], ok] (* _Giovanni Resta_, Aug 24 2018 *) %Y A318298 Cf. A001221, A080683, A097227, A290675. %K A318298 nonn,base %O A318298 1,1 %A A318298 _Michel Lagneau_, Aug 24 2018