cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318298 Numbers whose set of decimal digits coincides with the set of the indices of their prime factors.

This page as a plain text file.
%I A318298 #19 Sep 05 2018 09:57:57
%S A318298 12,14,154,1196,14112,21888,53625,226512,279174,358435,821142,1222452,
%T A318298 1665664,2228814,2454375,2614248,2872116,4425729,5751746,8653645,
%U A318298 9551256,15261246,19427226,19644898,19775998,21271488,27676935,29591892,29956212,41878242,45574144
%N A318298 Numbers whose set of decimal digits coincides with the set of the indices of their prime factors.
%C A318298 It is impossible to find a number with 9 distinct decimal digits because the prime factors 2 and 5 generate d_k = 0.
%C A318298 The finite subsequence containing the smallest numbers having at least j distinct digits for j = 2, 3, ..., 8, is 12, 154, 53625, 279174, 19427226, 82447365 and 41762985264.
%H A318298 Giovanni Resta, <a href="/A318298/b318298.txt">Table of n, a(n) for n = 1..10000</a>
%e A318298 1196 is in the sequence because the prime factors are {2, 13, 23} = {prime(1), prime(6), prime(9)}, and 1196 contains the decimal digits 1, 6, 9.
%p A318298 with(numtheory):nn:=10^8:
%p A318298 for n from 1 to nn do:
%p A318298 lst:={}:d:=factorset(n):n0:=nops(d):
%p A318298 q:=convert(n,base,10):n1:=nops(q):
%p A318298 p:=product(ā€˜q[i]’, ā€˜i’=1..n1):
%p A318298 if p<>0
%p A318298   then
%p A318298   for i from 1 to n1 do :
%p A318298    lst:=lst union {ithprime(q[i])}:
%p A318298   od:
%p A318298    if lst = d
%p A318298     then
%p A318298      print(n):
%p A318298      else
%p A318298      fi:fi:
%p A318298 od:
%t A318298 ok[n_] := Block[{f = First /@ FactorInteger[n], d}, Last@f < 24 && Min[d = Union@ IntegerDigits@ n] > 0 && Prime[d] == f]; Select[Range[10^6], ok] (* _Giovanni Resta_, Aug 24 2018 *)
%Y A318298 Cf. A001221, A080683, A097227, A290675.
%K A318298 nonn,base
%O A318298 1,1
%A A318298 _Michel Lagneau_, Aug 24 2018