cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329711 Numbers n such that n = prime(d_1) * prime(d_2) * ... * prime(d_k), where n is a concatenation of d_1, d_2, ..., d_k.

Original entry on oeis.org

14, 154, 1196, 2127, 61411, 172482, 223227, 279174, 291318, 1233822, 1346235, 2681318, 3127010, 6541482, 9105217, 14216826, 15136418, 15454362, 17211896, 22442133, 24174129, 32693925, 35219085, 35523825, 51157348, 51431138, 57121662, 58935162, 91242978, 101721214
Offset: 1

Views

Author

Bartlomiej Pawlik, Mar 07 2020

Keywords

Examples

			14 = prime(1)*prime(4) = 2*7, so 14 is a term.
154 = prime(1)*prime(5)*prime(4) = 2*11*7, so 154 is a term.
2127 = prime(2)*prime(127) = 3*709, so 2127 is a term.
9105217 = prime(9)*prime(10)*prime(5)*prime(21)*prime(7), so 9105217 is a term.
		

Crossrefs

Cf. A097227 (a subsequence), A318298.

Programs

  • Mathematica
    ok[n_] := Block[{d = DigitCount@ n}, AllTrue[Range@ 9, IntegerExponent[n, Prime@ #] <= d[[#]] &]]; ric[v_, d_] := If[PrimeQ@ v, PrimePi@ v == FromDigits@ d, Block[ {r=False, p, m = Length@ d}, Do[ If[ d[[i + 1]] > 0, p = Prime@ FromDigits@ Take[d, i]; If[Mod[v, p] == 0 && (r = ric[v/p, Take[d, i - m]]), Break[]]], {i, m - 1}]; r]]; Select[ Range@ 300000, If[ok@# && ric[#, IntegerDigits@ #], Print@#; True, False] &] (* Giovanni Resta, Mar 12 2020 *)

Extensions

More terms from Giovanni Resta, Mar 12 2020
Showing 1-1 of 1 results.