This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318301 #13 Sep 07 2018 04:24:39 %S A318301 1,1,1,2,3,5,10,18,33,61,122,234,450,867,1673,3346,6570,12906,25362, %T A318301 49857,98041,196082,388818,771066,1529226,3033090,6016323,11934605, %U A318301 23869210,47542338,94695858,188620650,275712074,748391058,1490765793,2969596981,5939193962,11854518714 %N A318301 Triangle T(n, k) read by rows: T(0, 0) = 1 and T(n, k) = Sum_{i=0..k-1} T(n, i) + Sum_{i=k..n-1} T(n-1, i). %C A318301 The left edge of the triangle appears to be A005321. %F A318301 An equivalent recursion: T(0, 0) = T(1, 0) = 1, T(n, 0) = 2*T(n-1, n-1) if n>=2, T(n, k) = 2*T(n, k-1) - T(n-1, k-1) if n>=k>=1. %e A318301 Triangle begins: %e A318301 1 %e A318301 1 1 %e A318301 2 3 5 %e A318301 10 18 33 61 %e A318301 122 234 450 867 1673 %e A318301 3346 6570 12906 25362 49857 98041 %e A318301 ... %e A318301 T(5, 2) = (3346 + 6570) + (450 + 867 + 1673) = 12906; %e A318301 T(5, 2) = 2 * 6570 - 234 = 12906. %o A318301 (Python) %o A318301 def T(n, k): %o A318301 if k == 0: %o A318301 if n == 0 or n == 1: %o A318301 return 1 %o A318301 return 2 * T(n-1, n-1) %o A318301 return 2 * T(n, k-1) - T(n-1, k-1) %o A318301 (PARI) T(n, k) = if (k == 0, if (n <= 1, 1, 2 * T(n-1, n-1)), 2 * T(n, k-1) - T(n-1, k-1)); %o A318301 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, Aug 25 2018 %Y A318301 Cf. A005321. %K A318301 nonn,tabl %O A318301 0,4 %A A318301 _Nicolas Nagel_, Aug 24 2018