cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318303 a(0) = 0, a(n) = n + a(n-1) if n is odd, a(n) = -3*a(n/2) if n is even.

This page as a plain text file.
%I A318303 #29 Sep 01 2018 12:38:30
%S A318303 0,1,-3,0,9,14,0,7,-27,-18,-42,-31,0,13,-21,-6,81,98,54,73,126,147,93,
%T A318303 116,0,25,-39,-12,63,92,18,49,-243,-210,-294,-259,-162,-125,-219,-180,
%U A318303 -378,-337,-441,-398,-279,-234,-348,-301,0,49,-75,-24,117,170,36,91,-189,-132,-276,-217,-54,7,-147,-84,729,794,630
%N A318303 a(0) = 0, a(n) = n + a(n-1) if n is odd, a(n) = -3*a(n/2) if n is even.
%C A318303 Let g_k(0) = 0.  g_k(n) = n + g_k(n-1) if n is odd, g_k(n) = k*a(n/2) if n is even. A228451(n) is g_1(n), A298011(n) is g_2(n). This sequence is a(n) = g_k(n) where k = -3.
%H A318303 Altug Alkan, <a href="/A318303/b318303.txt">Table of n, a(n) for n = 0..32767</a>
%H A318303 Rémy Sigrist, <a href="/A318303/a318303.png">Colored scatterplot of a(n) for n = 0..1000000</a> (where the color is function of A262304(n))
%H A318303 Rémy Sigrist, <a href="/A318303/a318303_1.png">Colored scatterplot of a(n) for n = 0..1000000</a> (where the color is function of floor(n / 2^(A070939(n) - 6)))
%H A318303 Rémy Sigrist, <a href="/A318303/a318303_2.png">A colored scatterplot of (A317825(n), abs(A318303(n))) for n = 1..2^20-1 </a> (where the color is function of floor(n / 2^(A070939(n)-5)))
%H A318303 Altug Alkan, <a href="/A318303/a318303_3.png">A scatterplot of (A317825(n), A318303(n)+A317825(n)) for n = 1..2^17-1</a>
%t A318303 Nest[Append[#1, If[OddQ@ #2, #2 + #1[[-1]], -3 #1[[#2/2 + 1]] ]] & @@ {#, Length@ #} &, {0}, 66] (* _Michael De Vlieger_, Aug 25 2018 *)
%o A318303 (PARI) a(n)=if(n==0, 0, if(n%2, n+a(n-1), -3*a(n/2)));
%Y A318303 Cf. A070939, A228451, A262304, A298011, A305865, A317825, A318265.
%K A318303 sign,look
%O A318303 0,3
%A A318303 _Altug Alkan_, Aug 24 2018