cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318313 Numerators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.

This page as a plain text file.
%I A318313 #15 May 10 2025 04:05:36
%S A318313 1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,35,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,63,1,
%T A318313 1,1,3,1,1,1,5,1,1,1,3,1,1,1,35,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,231,1,1,
%U A318313 1,3,1,1,1,5,1,1,1,3,1,1,1,35,3,1,1,3,1,1,1,5,1,1,1,3,1,1,1,63,1,1,1,3,1,1,1,5,1
%N A318313 Numerators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.
%H A318313 Antti Karttunen, <a href="/A318313/b318313.txt">Table of n, a(n) for n = 1..65537</a>
%H A318313 Vaclav Kotesovec, <a href="/A318313/a318313.jpg">Graph - the asymptotic ratio (16384 terms)</a>
%F A318313 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318313 Sum_{k=1..n} A318313(k) / A318314(k) ~ 2*n/Pi. - _Vaclav Kotesovec_, May 10 2025
%o A318313 (PARI)
%o A318313 up_to = 16384;
%o A318313 A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068
%o A318313 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318313 v318313_15 = DirSqrt(vector(up_to, n, A068068(n)));
%o A318313 A318313(n) = numerator(v318313_15[n]);
%Y A318313 Cf. A068068, A318314 (denominators).
%Y A318313 Differs from A318453 for the first time at n=81, where a(81) = 3, while A318453(81) = 1.
%K A318313 nonn,frac,mult
%O A318313 1,4
%A A318313 _Antti Karttunen_ and _Andrew Howroyd_, Aug 29 2018