cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318314 Denominators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.

This page as a plain text file.
%I A318314 #24 Oct 05 2021 21:07:54
%S A318314 1,2,1,8,1,2,1,16,2,2,1,8,1,2,1,128,1,4,1,8,1,2,1,16,2,2,2,8,1,2,1,
%T A318314 256,1,2,1,16,1,2,1,16,1,2,1,8,2,2,1,128,2,4,1,8,1,4,1,16,1,2,1,8,1,2,
%U A318314 2,1024,1,2,1,8,1,2,1,32,1,2,2,8,1,2,1,128,8,2,1,8,1,2,1,16,1,4,1,8,1,2,1,256,1,4,2,16,1,2,1,16,1
%N A318314 Denominators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.
%C A318314 The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
%C A318314 Note that A318314 differs from A318454 at exactly those n where A001227 differs from A068068, the numbers in A038838. - _Antti Karttunen_, Sep 07 2018
%H A318314 Antti Karttunen, <a href="/A318314/b318314.txt">Table of n, a(n) for n = 1..16384</a>
%F A318314 a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318314 a(n) = 2^A318315(n).
%F A318314 From _Antti Karttunen_, Sep 03-07 2018: (Start, conjectured formulas)
%F A318314 a(n) = A006519(n) * A317934(n), thus multiplicative with a(2^e) = 2^A005187(e), a(p^e) = 2^A011371(e) for odd primes p.
%F A318314 Equally, multiplicative with a(p^e) = 2^(((2-A000035(p))*e)-A000120(e)) for all primes p.
%F A318314 (End)
%t A318314 a35[n_] := (1 - (-1)^n)/2;
%t A318314 a120[n_] := DigitCount[n, 2, 1];
%t A318314 a[n_] := Product[{p, e} = pe; 2^(((2 - a35[p])*e) - a120[e]), {pe, FactorInteger[n]}];
%t A318314 a /@ Range[100] (* _Jean-François Alcover_, Sep 19 2019 *)
%o A318314 (PARI)
%o A318314 up_to = 16384;
%o A318314 A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068
%o A318314 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318314 v318313_15 = DirSqrt(vector(up_to, n, A068068(n)));
%o A318314 A318313(n) = numerator(v318313_15[n]);
%o A318314 A318314(n) = denominator(v318313_15[n]);
%Y A318314 Cf. A005187, A011371, A068068, A318313 (numerators), A318315.
%Y A318314 Cf. also A006519, A046644, A299150, A317932, A317934, A317940, A318454, A318662.
%K A318314 nonn,frac,mult
%O A318314 1,2
%A A318314 _Antti Karttunen_ and _Andrew Howroyd_, Aug 29 2018