cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

This page as a plain text file.
%I A318317 #17 May 11 2025 04:46:35
%S A318317 1,1,1,3,2,1,3,5,1,1,5,3,6,3,2,35,8,1,9,3,3,5,11,5,0,3,1,9,14,1,15,63,
%T A318317 5,4,6,3,18,9,6,5,20,3,21,15,1,11,23,35,-3,0,8,9,26,1,10,15,9,7,29,3,
%U A318317 30,15,3,231,12,5,33,3,11,3,35,5,36,9,0,27,15,3,39,35,3,10,41,9,16,21,14,25,44,1,18,33,15,23,18,63,48,-3,5,0,50,4,51,15,6
%N A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.
%H A318317 Antti Karttunen, <a href="/A318317/b318317.txt">Table of n, a(n) for n = 1..65537</a>
%H A318317 Vaclav Kotesovec, <a href="/A318317/a318317.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A318317 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318317 From _Vaclav Kotesovec_, May 10 2025: (Start)
%F A318317 Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
%F A318317 Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
%F A318317 f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
%F A318317 f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)
%t A318317 f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* _Vaclav Kotesovec_, May 10 2025 *)
%o A318317 (PARI)
%o A318317 up_to = 16384;
%o A318317 A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
%o A318317 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318317 v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
%o A318317 A318317(n) = numerator(v318317_18[n]);
%Y A318317 Cf. A173557, A318318 (denominators).
%Y A318317 Cf. also A317925, A317935.
%K A318317 sign,frac
%O A318317 1,4
%A A318317 _Antti Karttunen_, Aug 24 2018