cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318318 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

This page as a plain text file.
%I A318318 #9 May 10 2025 12:13:55
%S A318318 1,2,1,8,1,2,1,16,2,1,1,8,1,2,1,128,1,4,1,4,1,2,1,16,1,1,2,8,1,1,1,
%T A318318 256,1,1,1,16,1,2,1,8,1,2,1,8,1,2,1,128,2,1,1,4,1,4,1,16,1,1,1,4,1,2,
%U A318318 2,1024,1,2,1,1,1,1,1,32,1,1,1,8,1,1,1,64,8,1,1,8,1,2,1,16,1,2,1,8,1,2,1,256,1,4,2,1,1,1,1,8,1
%N A318318 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A173557.
%C A318318 Not multiplicative because A318317 contains zeros.
%C A318318 Differs from A317926 at n = 200, 400, 600, 800, 900, 1200, 1400, 1600, 1800, 2200, 2400, 2700, 2800, 3200, 3600, 3800, 4050, 4200, 4400, 4600, 4800, 4900, 5200, ..., which seem to be a subsequence of positions of zeros in A318317.
%C A318318 Here a(200) = 1, while A317926(200) = 2.
%H A318318 Antti Karttunen, <a href="/A318318/b318318.txt">Table of n, a(n) for n = 1..65537</a>
%F A318318 a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%t A318318 f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Denominator[f[n]], {n, 1, 100}] (* _Vaclav Kotesovec_, May 10 2025 *)
%o A318318 (PARI)
%o A318318 up_to = 16384;
%o A318318 A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
%o A318318 DirSqrt(v) = {my(n=#v, u=vector(nA173557)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318318 v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
%o A318318 A318318(n) = denominator(v318317_18[n]);
%Y A318318 Cf. A173557, A318317 (numerators).
%Y A318318 Cf. also A317926.
%K A318318 nonn,frac
%O A318318 1,2
%A A318318 _Antti Karttunen_, Aug 24 2018