cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318319 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A064989.

This page as a plain text file.
%I A318319 #7 Aug 24 2018 22:13:09
%S A318319 1,1,1,3,3,1,5,5,3,3,7,3,11,5,3,35,13,3,17,9,5,7,19,5,27,11,5,15,23,3,
%T A318319 29,63,7,13,15,9,31,17,11,15,37,5,41,21,9,19,43,35,75,27,13,33,47,5,
%U A318319 21,25,17,23,53,9,59,29,15,231,33,7,61,39,19,15,67,15,71,31,27,51,35,11,73,105,35,37,79,15,39,41,23,35,83,9,55,57
%N A318319 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A064989.
%C A318319 Multiplicative because A064989 is.
%C A318319 No negative terms among the first 2^20 terms.
%H A318319 Antti Karttunen, <a href="/A318319/b318319.txt">Table of n, a(n) for n = 1..16384</a>
%H A318319 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A318319 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064989(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A318319 (PARI)
%o A318319 up_to = 16384;
%o A318319 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A318319 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318319 v318319aux = DirSqrt(vector(up_to, n, A064989(n)));
%o A318319 A318319(n) = numerator(v318319aux[n]);
%Y A318319 Cf. A064989, A317932 (seems to give denominators, see A261179).
%Y A318319 Cf. also A318321.
%K A318319 nonn,frac,mult
%O A318319 1,4
%A A318319 _Antti Karttunen_, Aug 24 2018