cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318323 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.

This page as a plain text file.
%I A318323 #7 Aug 24 2018 22:13:33
%S A318323 1,1,1,3,1,2,1,5,3,2,1,5,1,2,2,35,1,5,1,5,2,2,1,4,3,2,5,5,1,9,1,63,2,
%T A318323 2,2,35,1,2,2,4,1,9,1,5,5,2,1,55,3,5,2,5,1,4,2,4,2,2,1,9,1,2,5,231,2,
%U A318323 9,1,5,2,9,1,43,1,2,5,5,2,9,1,55,35,2,1,9,2,2,2,4,1,9,2,5,2,2,2,49,1,5,5,35,1,9,1,4,9
%N A318323 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.
%C A318323 The first 2^20 terms are positive.
%H A318323 Antti Karttunen, <a href="/A318323/b318323.txt">Table of n, a(n) for n = 1..16384</a>
%F A318323 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046523(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A318323 (PARI)
%o A318323 up_to = 16384;
%o A318323 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
%o A318323 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318323 v318323_24 = DirSqrt(vector(up_to, n, A046523(n)));
%o A318323 A318323(n) = numerator(v318323_24[n]);
%Y A318323 Cf. A046523, A318324 (gives the denominators).
%K A318323 nonn,frac
%O A318323 1,4
%A A318323 _Antti Karttunen_, Aug 24 2018