A318343 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 4, 6, 4, 8, 10, 10, 8, 16, 20, 20, 20, 16, 32, 42, 36, 36, 42, 32, 64, 89, 76, 67, 76, 89, 64, 128, 190, 160, 148, 148, 160, 190, 128, 256, 407, 344, 343, 393, 343, 344, 407, 256, 512, 873, 748, 817, 1115, 1115, 817, 748, 873, 512, 1024, 1874, 1624, 1975, 3321
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..1..1..0..0. .1..1..1..1. .0..1..0..0. .0..0..0..0. .1..1..1..1 ..1..0..0..1. .1..1..1..0. .0..0..1..0. .1..1..1..1. .1..1..1..1 ..0..0..1..1. .1..1..0..0. .0..0..0..0. .1..1..1..0. .1..1..1..0 ..0..1..1..0. .1..0..0..1. .0..0..0..1. .1..1..0..0. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..611
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-4) for n>6
k=3: a(n) = 2*a(n-1) +2*a(n-2) -3*a(n-3) -2*a(n-4) +2*a(n-5) for n>6
k=4: [order 8] for n>9
k=5: [order 15] for n>18
k=6: [order 23] for n>27
k=7: [order 36] for n>41
Comments