This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318364 #16 Mar 26 2019 11:53:44 %S A318364 1,1,5,28,197,1676,16597,186796,2350105,32634928,495207881,8144456684, %T A318364 144204493765,2733218222944,55188182951917,1182163846918156, %U A318364 26765995313355953,638508459302742464,16002492517241163793,420279349847440766284,11540406000681962458141,330624627443307824367616 %N A318364 Expansion of e.g.f. exp(x*exp(x)/(1 - x)). %F A318364 a(0) = 1; a(n) = Sum_{k=1..n} A007526(k)*binomial(n-1,k-1)*a(n-k). %F A318364 a(n) ~ exp(1/4 - 3*exp(1)/2 + 2*exp(1/2)*sqrt(n) - n) * n^(n - 1/4) / sqrt(2). - _Vaclav Kotesovec_, Aug 25 2018 %p A318364 a:=series(exp(x*exp(x)/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # _Paolo P. Lava_, Mar 26 2019 %t A318364 nmax = 21; CoefficientList[Series[Exp[x Exp[x]/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]! %t A318364 a[n_] := a[n] = Sum[Floor[Exp[1] k! - 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] %o A318364 (PARI) x = 'x + O('x^25); Vec(serlaplace(exp(x*exp(x)/(1 - x)))) \\ _Michel Marcus_, Aug 25 2018 %Y A318364 Cf. A000248, A000262, A000522, A007526, A318365. %K A318364 nonn %O A318364 0,3 %A A318364 _Ilya Gutkovskiy_, Aug 24 2018