cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318367 a(n) = Sum_{d|n} (-1)^(n/d+1)*d*prime(d).

This page as a plain text file.
%I A318367 #13 Aug 01 2023 21:02:49
%S A318367 2,4,17,20,57,67,121,116,224,239,343,371,535,487,777,660,1005,958,
%T A318367 1275,1095,1669,1401,1911,1715,2482,2097,3005,2295,3163,2987,3939,
%U A318367 3156,4879,3727,5391,4502,5811,4925,7063,5271,7341,6619,8215,6433,9849,7249,9919,8691,11244,9264
%N A318367 a(n) = Sum_{d|n} (-1)^(n/d+1)*d*prime(d).
%H A318367 Robert Israel, <a href="/A318367/b318367.txt">Table of n, a(n) for n = 1..10000</a>
%F A318367 G.f.: Sum_{k>=1} k*prime(k)*x^k/(1 + x^k).
%F A318367 L.g.f.: log(Product_{k>=1} (1 + x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n.
%p A318367 f:= proc(n) local d; add((-1)^(n/d+1)*d*ithprime(d), d = numtheory:-divisors(n)); end proc:map(f, [$1..100]); # _Robert Israel_, Aug 01 2023
%t A318367 Table[Sum[(-1)^(n/d + 1) d Prime[d], {d, Divisors[n]}], {n, 50}]
%t A318367 nmax = 50; Rest[CoefficientList[Series[Sum[k Prime[k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
%t A318367 nmax = 50; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^Prime[k], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
%o A318367 (PARI) a(n) = sumdiv(n, d, (-1)^(n/d+1)*d*prime(d)); \\ _Michel Marcus_, Aug 25 2018
%Y A318367 Cf. A033286, A061150, A061151, A061152.
%K A318367 nonn,look
%O A318367 1,1
%A A318367 _Ilya Gutkovskiy_, Aug 24 2018