A318389 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet {{1},...,{n}} and join of length k.
1, 2, 1, 8, 6, 1, 56, 44, 12, 1, 552, 440, 140, 20, 1, 7202, 5632, 1920, 340, 30, 1, 118456, 89278, 31192, 6160, 700, 42, 1, 2369922, 1708016, 595448, 124432, 16240, 1288, 56, 1, 56230544, 38592786, 13214672, 2830632, 400512, 37296, 2184, 72, 1, 1552048082
Offset: 1
Examples
The T(3,2) = 6 pairs of set partitions: {{1},{2},{3}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} Triangle begins: 1 2 1 8 6 1 56 44 12 1 552 440 140 20 1 7202 5632 1920 340 30 1
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c]; Table[Length[Select[Tuples[sps[Range[n]],2],And[Max@@Length/@spmeet@@#==1,Length[csm[Union@@#]]==k]&]],{n,5},{k,n}]