A318390 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join {{1,...,n}} and meet of length k.
1, 1, 2, 1, 6, 8, 1, 14, 48, 56, 1, 30, 200, 560, 552, 1, 62, 720, 3640, 8280, 7202, 1, 126, 2408, 19600, 77280, 151242, 118456, 1, 254, 7728, 95256, 579600, 1915732, 3316768, 2369922, 1, 510, 24200, 435120, 3836952, 19056492, 54726672, 85317192, 56230544, 1
Offset: 1
Examples
The T(3,3) = 8 pairs of set partitions: {{1},{2},{3}} {{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1},{2,3}} {{1,3},{2}} {{1,2},{3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,3},{2}} {{1},{2,3}} {{1,3},{2}} {{1,2},{3}} {{1,2,3}} {{1},{2},{3}} Triangle begins: 1 1 2 1 6 8 1 14 48 56 1 30 200 560 552 1 62 720 3640 8280 7202
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c]; Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==1]&]],{n,6},{k,n}]