cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318391 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k.

This page as a plain text file.
%I A318391 #12 Jan 22 2023 20:50:16
%S A318391 1,1,3,1,9,15,1,21,90,113,1,45,375,1130,1153,1,93,1350,7345,17295,
%T A318391 15125,1,189,4515,39550,161420,317625,245829,1,381,14490,192213,
%U A318391 1210650,4023250,6883212,4815403,1,765,45375,878010,8014503,40020750,113572998,173354508,111308699
%N A318391 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k.
%H A318391 Andrew Howroyd, <a href="/A318391/b318391.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%F A318391 T(n,k) = S(n,k) * Sum_{i=1..k} s(k,i) * B(i)^2 where S = A008277, s = A048994, B = A000110.
%e A318391 The T(3,2) = 9 pairs of set partitions:
%e A318391   {{1},{2,3}}  {{1},{2,3}}
%e A318391   {{1},{2,3}}   {{1,2,3}}
%e A318391   {{1,2},{3}}  {{1,2},{3}}
%e A318391   {{1,2},{3}}   {{1,2,3}}
%e A318391   {{1,3},{2}}  {{1,3},{2}}
%e A318391   {{1,3},{2}}   {{1,2,3}}
%e A318391    {{1,2,3}}   {{1},{2,3}}
%e A318391    {{1,2,3}}   {{1,2},{3}}
%e A318391    {{1,2,3}}   {{1,3},{2}}
%e A318391 Triangle begins:
%e A318391      1
%e A318391      1     3
%e A318391      1     9    15
%e A318391      1    21    90   113
%e A318391      1    45   375  1130  1153
%e A318391      1    93  1350  7345 17295 15125
%t A318391 Table[StirlingS2[n,k]*Sum[StirlingS1[k,i]*BellB[i]^2,{i,k}],{n,10},{k,n}]
%o A318391 (PARI) row(n) = {my(b=Vec(serlaplace(exp(exp(x + O(x*x^n))-1)-1))); vector(n, k, stirling(n,k,2)*sum(i=1, k, stirling(k,i,1)*b[i]^2))}
%o A318391 { for(n=1, 10, print(row(n))) } \\ _Andrew Howroyd_, Jan 19 2023
%Y A318391 Row sums are A001247. Last column is A059849.
%Y A318391 Cf. A000110, A000258, A008277, A048994, A060639, A181939, A318389, A318390, A318392, A318393.
%K A318391 nonn,tabl
%O A318391 1,3
%A A318391 _Gus Wiseman_, Aug 25 2018