cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318392 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k.

This page as a plain text file.
%I A318392 #5 Sep 15 2018 15:43:52
%S A318392 1,3,1,15,9,1,119,87,18,1,1343,1045,285,30,1,19905,15663,4890,705,45,
%T A318392 1,369113,286419,95613,16450,1470,63,1,8285261,6248679,2147922,410053,
%U A318392 44870,2730,84,1,219627683,159648795,55211229,11202534,1394883,105714,4662,108,1
%N A318392 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k.
%F A318392 E.g.f.: (Sum_{n>=0} B(n)^2 x^n/n!)^t where B = A000110.
%e A318392 The T(3,2) = 9 pairs of set partitions:
%e A318392   {{1},{2},{3}}  {{1},{2,3}}
%e A318392   {{1},{2},{3}}  {{1,2},{3}}
%e A318392   {{1},{2},{3}}  {{1,3},{2}}
%e A318392    {{1},{2,3}}  {{1},{2},{3}}
%e A318392    {{1},{2,3}}   {{1},{2,3}}
%e A318392    {{1,2},{3}}  {{1},{2},{3}}
%e A318392    {{1,2},{3}}   {{1,2},{3}}
%e A318392    {{1,3},{2}}  {{1},{2},{3}}
%e A318392    {{1,3},{2}}   {{1,3},{2}}
%e A318392 Triangle begins:
%e A318392       1
%e A318392       3     1
%e A318392      15     9     1
%e A318392     119    87    18     1
%e A318392    1343  1045   285    30     1
%e A318392   19905 15663  4890   705    45     1
%t A318392 nn=5;Table[n!*SeriesCoefficient[Sum[BellB[n]^2*x^n/n!,{n,0,nn}]^t,{x,0,n},{t,0,k}],{n,nn},{k,n}]
%Y A318392 Row sums are A001247. First column is A060639.
%Y A318392 Cf. A000110, A000258, A008277, A048994, A059849, A181939, A318389, A318390, A318391, A318393.
%K A318392 nonn,tabl
%O A318392 1,2
%A A318392 _Gus Wiseman_, Aug 25 2018