This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318392 #5 Sep 15 2018 15:43:52 %S A318392 1,3,1,15,9,1,119,87,18,1,1343,1045,285,30,1,19905,15663,4890,705,45, %T A318392 1,369113,286419,95613,16450,1470,63,1,8285261,6248679,2147922,410053, %U A318392 44870,2730,84,1,219627683,159648795,55211229,11202534,1394883,105714,4662,108,1 %N A318392 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k. %F A318392 E.g.f.: (Sum_{n>=0} B(n)^2 x^n/n!)^t where B = A000110. %e A318392 The T(3,2) = 9 pairs of set partitions: %e A318392 {{1},{2},{3}} {{1},{2,3}} %e A318392 {{1},{2},{3}} {{1,2},{3}} %e A318392 {{1},{2},{3}} {{1,3},{2}} %e A318392 {{1},{2,3}} {{1},{2},{3}} %e A318392 {{1},{2,3}} {{1},{2,3}} %e A318392 {{1,2},{3}} {{1},{2},{3}} %e A318392 {{1,2},{3}} {{1,2},{3}} %e A318392 {{1,3},{2}} {{1},{2},{3}} %e A318392 {{1,3},{2}} {{1,3},{2}} %e A318392 Triangle begins: %e A318392 1 %e A318392 3 1 %e A318392 15 9 1 %e A318392 119 87 18 1 %e A318392 1343 1045 285 30 1 %e A318392 19905 15663 4890 705 45 1 %t A318392 nn=5;Table[n!*SeriesCoefficient[Sum[BellB[n]^2*x^n/n!,{n,0,nn}]^t,{x,0,n},{t,0,k}],{n,nn},{k,n}] %Y A318392 Row sums are A001247. First column is A060639. %Y A318392 Cf. A000110, A000258, A008277, A048994, A059849, A181939, A318389, A318390, A318391, A318393. %K A318392 nonn,tabl %O A318392 1,2 %A A318392 _Gus Wiseman_, Aug 25 2018