cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318393 Regular tetrangle where T(n,k,i) is the number of pairs of set partitions of {1,...,n} with meet of length k and join of length i.

This page as a plain text file.
%I A318393 #6 Sep 06 2018 15:38:14
%S A318393 1,1,2,1,1,6,3,8,6,1,1,14,7,48,36,6,56,44,12,1,1,30,15,200,150,25,560,
%T A318393 440,120,10,552,440,140,20,1,1,62,31,720,540,90,3640,2860,780,65,8280,
%U A318393 6600,2100,300,15,7202,5632,1920,340,30,1,1,126,63,2408,1806
%N A318393 Regular tetrangle where T(n,k,i) is the number of pairs of set partitions of {1,...,n} with meet of length k and join of length i.
%e A318393 The T(3,3,1) = 8 pairs of set partitions:
%e A318393   {{1},{2},{3}}  {{1,2,3}}
%e A318393    {{1},{2,3}}  {{1,2},{3}}
%e A318393    {{1},{2,3}}  {{1,3},{2}}
%e A318393    {{1,2},{3}}  {{1},{2,3}}
%e A318393    {{1,2},{3}}  {{1,3},{2}}
%e A318393    {{1,3},{2}}  {{1},{2,3}}
%e A318393    {{1,3},{2}}  {{1,2},{3}}
%e A318393     {{1,2,3}}  {{1},{2},{3}}
%e A318393 Tetrangle begins:
%e A318393    1   1     1       1            1
%e A318393        2 1   6 3     14 7         30  15
%e A318393              8 6 1   48 36 6      200 150 25
%e A318393                      56 44 12 1   560 440 120 10
%e A318393                                   552 440 140 20  1
%t A318393 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A318393 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A318393 spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
%t A318393 Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==j]&]],{n,6},{k,n},{j,k}]
%Y A318393 Cf. A000110, A000258, A001247, A008277, A048994, A059849, A060639, A181939, A318389, A318390, A318391, A318392.
%K A318393 nonn,tabf
%O A318393 1,3
%A A318393 _Gus Wiseman_, Aug 25 2018