A318394 Number of finite sets of set partitions of {1,...,n} such that any two have meet {{1},...,{n}}.
2, 4, 18, 316, 37492
Offset: 1
Examples
The a(3) = 18 sets of set partitions: 0 {{1,2,3}} {{1,3},{2}} {{1,2},{3}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1,3},{2}} {{1},{2,3}} {{1,2},{3}} {{1},{2},{3}} {{1,2,3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1},{2,3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2,3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2,3}} {{1,2},{3}} {{1},{2},{3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c]; Table[Length[stableSets[sps[Range[n]],Max@@Length/@spmeet[#1,#2]>1&]],{n,5}]