cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318394 Number of finite sets of set partitions of {1,...,n} such that any two have meet {{1},...,{n}}.

Original entry on oeis.org

2, 4, 18, 316, 37492
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(3) = 18 sets of set partitions:
        0
    {{1,2,3}}
   {{1,3},{2}}
   {{1,2},{3}}
   {{1},{2,3}}
  {{1},{2},{3}}
   {{1,2},{3}}   {{1,3},{2}}
   {{1},{2,3}}   {{1,3},{2}}
   {{1},{2,3}}   {{1,2},{3}}
  {{1},{2},{3}}   {{1,2,3}}
  {{1},{2},{3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1},{2,3}}
   {{1},{2,3}}   {{1,2},{3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1,2},{3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1},{2,3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1},{2,3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1},{2,3}}  {{1,2},{3}}  {{1,3},{2}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
    Table[Length[stableSets[sps[Range[n]],Max@@Length/@spmeet[#1,#2]>1&]],{n,5}]