This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318396 #13 Oct 31 2019 21:13:08 %S A318396 1,1,3,6,15,28,64,116,238,430,818,1426,2618,4439,7775,12993,22025, %T A318396 35946,59507,95319,154073,243226,385192,598531,933096,1429794,2193699, %U A318396 3322171,5027995,7524245,11253557,16661211,24637859,36130242,52879638,76830503,111422013,160505622 %N A318396 Number of pairs of integer partitions (y, v) of n such that there exists a pair of set partitions of {1,...,n} with meet {{1},...,{n}}, the first having block sizes y and the second v. %C A318396 A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. a(n) is also the number of combinatory separations (see A269134 for definition) of strongly normal multisets of size n into normal sets. %C A318396 From _Andrew Howroyd_, Oct 31 2019: (Start) %C A318396 Also, the number of distinct unordered row and column sums of binary matrices without empty columns or rows and with a total of n ones. Only matrices in which both row and columns sums are weakly increasing need to be considered. %C A318396 By the Gale-Ryser theorem this is equivalent to the number of pairs of integer partitions (y,v) of n with y dominating v. (End) %H A318396 Andrew Howroyd, <a href="/A318396/b318396.txt">Table of n, a(n) for n = 0..100</a> %H A318396 Manfred Krause, <a href="https://doi.org/10.2307%2F2975191">A simple proof of the Gale-Ryser theorem</a>, American Mathematical Monthly, 1996. %H A318396 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gale%E2%80%93Ryser_theorem">Gale-Ryser theorem</a> %e A318396 The a(4) = 15 pairs of integer partitions: %e A318396 4, 1111 %e A318396 22, 22 %e A318396 22, 211 %e A318396 22, 1111 %e A318396 31, 211 %e A318396 31, 1111 %e A318396 211, 22 %e A318396 211, 31 %e A318396 211, 211 %e A318396 211, 1111 %e A318396 1111, 4 %e A318396 1111, 22 %e A318396 1111, 31 %e A318396 1111, 211 %e A318396 1111, 1111 %e A318396 The a(4) = 15 combinatory separations: %e A318396 1111<={1,1,1,1} %e A318396 1112<={1,1,12} %e A318396 1112<={1,1,1,1} %e A318396 1122<={12,12} %e A318396 1122<={1,1,12} %e A318396 1122<={1,1,1,1} %e A318396 1123<={1,123} %e A318396 1123<={12,12} %e A318396 1123<={1,1,12} %e A318396 1123<={1,1,1,1} %e A318396 1234<={1234} %e A318396 1234<={1,123} %e A318396 1234<={12,12} %e A318396 1234<={1,1,12} %e A318396 1234<={1,1,1,1} %t A318396 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A318396 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A318396 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A318396 normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; %t A318396 Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@UnsameQ@@@#[[2]]&]],{n,6}] %o A318396 (PARI) %o A318396 IsDom(p,q)=if(#q<#p, 0, my(s=0,t=0); for(i=0, #p-1, s+=p[#p-i]; t+=q[#q-i]; if(t>s, return(0))); 1) %o A318396 a(n)={if(n<1, n==0, my(s=0); forpart(p=n, forpart(q=n, s+=IsDom(p,q), [1, p[#p]], [#p, n])); s)} \\ _Andrew Howroyd_, Oct 31 2019 %o A318396 (PARI) \\ faster version. %o A318396 a(n)={local(Cache=Map()); %o A318396 my(recurse(b, c, s, t)=my(hk=Vecsmall([b, c, s, t]), z); %o A318396 if(!mapisdefined(Cache, hk, &z), %o A318396 z = if(s, sum(i=1, min(s, b), sum(j=1, min(t-s+i, c), self()(i, j, s-i, t-j))), %o A318396 if(t, sum(j=1, min(t, c), self()(b, j, s, t-j)), 1)); %o A318396 mapput(Cache, hk, z)); z); %o A318396 recurse(n, n, n, n) %o A318396 } \\ _Andrew Howroyd_, Oct 31 2019 %Y A318396 Cf. A000041, A000110, A001247, A007716, A008277, A029894, A049311, A059849, A116540, A181939, A265947, A269134, A318393, A318394, A327913. %K A318396 nonn %O A318396 0,3 %A A318396 _Gus Wiseman_, Aug 25 2018 %E A318396 Terms a(9) and beyond from _Andrew Howroyd_, Oct 31 2019