This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318401 #12 Dec 16 2018 17:58:15 %S A318401 1,2,3,7,13,15,19,35,37,53,61,69,89,91,95,113,131,141,143,145,151,161, %T A318401 165,223,247,251,265,281,299,309,311,329,355,359,377,385,407,427,437, %U A318401 463,503,591,593,611,655,659,667,671,689,703,719,721,759,791,827,851 %N A318401 Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices span an initial interval of positive integers. %C A318401 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of strict antichains of multisets spanning an initial interval of positive integers. %e A318401 The sequence of multisystems whose MM-numbers belong to the sequence begins: %e A318401 1: {} %e A318401 2: {{}} %e A318401 3: {{1}} %e A318401 7: {{1,1}} %e A318401 13: {{1,2}} %e A318401 15: {{1},{2}} %e A318401 19: {{1,1,1}} %e A318401 35: {{2},{1,1}} %e A318401 37: {{1,1,2}} %e A318401 53: {{1,1,1,1}} %e A318401 61: {{1,2,2}} %e A318401 69: {{1},{2,2}} %e A318401 89: {{1,1,1,2}} %e A318401 91: {{1,1},{1,2}} %e A318401 95: {{2},{1,1,1}} %t A318401 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A318401 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A318401 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A318401 Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible]]&] %Y A318401 Cf. A003963, A006126, A055932, A056239, A112798, A285572, A290103, A293993, A302242, A304713, A316476, A319496, A319721, A319837, A320275, A320456. %K A318401 nonn %O A318401 1,2 %A A318401 _Gus Wiseman_, Dec 16 2018