This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318403 #11 Oct 12 2018 22:42:46 %S A318403 1,1,1,2,2,3,4,6,8,12,13,22,31 %N A318403 Number of strict connected antichains of sets whose multiset union is an integer partition of n. %e A318403 The a(1) = 1 through a(10) = 13 clutters: %e A318403 {{1}} {{2}} {{3}} {{4}} {{5}} {{6}} {{7}} %e A318403 {{1,2}} {{1,3}} {{1,4}} {{1,5}} {{1,6}} %e A318403 {{2,3}} {{2,4}} {{2,5}} %e A318403 {{1,2,3}} {{3,4}} %e A318403 {{1,2,4}} %e A318403 {{1,2},{1,3}} %e A318403 . %e A318403 {{8}} {{9}} {{10}} %e A318403 {{1,7}} {{1,8}} {{1,9}} %e A318403 {{2,6}} {{2,7}} {{2,8}} %e A318403 {{3,5}} {{3,6}} {{3,7}} %e A318403 {{1,2,5}} {{4,5}} {{4,6}} %e A318403 {{1,3,4}} {{1,2,6}} {{1,2,7}} %e A318403 {{1,2},{1,4}} {{1,3,5}} {{1,3,6}} %e A318403 {{1,2},{2,3}} {{2,3,4}} {{1,4,5}} %e A318403 {{1,2},{1,5}} {{2,3,5}} %e A318403 {{1,2},{2,4}} {{1,2,3,4}} %e A318403 {{1,3},{1,4}} {{1,2},{1,6}} %e A318403 {{1,3},{2,3}} {{1,2},{2,5}} %e A318403 {{1,3},{1,5}} %t A318403 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A318403 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A318403 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A318403 submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]]; %t A318403 antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; %t A318403 Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}] %Y A318403 Cf. A001970, A007718, A048143, A050342, A056156, A089259, A261049, A293994, A319719, A320351, A320353, A320355, A320356. %K A318403 nonn,more %O A318403 0,4 %A A318403 _Gus Wiseman_, Oct 12 2018